Bioaktivitas Ekstrak Makroalga Sargassum sp. dan Gracilaria sp. terhadap Korosi Mikrobial T. Ferrooxidans

Isriyanti Affifah, Fida Madayanti Warganegara, Bunbun Bundjali, Rahmat Firman Septiyanto, Irah Namirah, Rifdah Hanifah

Abstract


Korosi mikrobial merupakan korosi yang disebabkan oleh adanya pertumbuhan mikroba. Korosi jenis ini dapat mempengaruhi dan mempercepat proses terjadinya korosi karena adanya mikroba. Pipa bawah laut merupakan salah satu material yang sering ditumbuhi bakteri penyebab korosi. Korosi akibat aktivitas mikroba dapat menyebabkan kebocoran pipa bawah laut yang dapat mencemari lingkungan dan biota laut lainnya. Mikroba tersebut tumbuh dan menetap pada pipa selama beberapa lama dan menyebabkan perkaratan pipa. Salah satu mikroba yang dapat menyebabkan korosi microbial adalah bakteri aerob yang berperan aktif dalam proses microbial korosi yaitu bakteri Thiobacillus. Bakteri jenis ini mampu menghasilkan kondisi lingkungan asam yang bersifat korosif hasil dari oksidasi sulfur menjadi asam sulfat. Pada penelitian ini ditentukan laju inhibisi korosi dan dosis optimum makroalga yang digunakan untuk mendapatkan hasil inhibisi yang optimal. Ekstrak metanol Gracilaria sp. dan Sargassum sp. mampu menginhibisi pertumbuhan T. ferooxidans pada dosis 300µL dan 400µL dalam 10 ml media. Nilai LC50 ekstrak Sargassum sp. adalah 483 µL sedangkan untuk ekstrak Gracilaria sp. adalah 461 µL dalam 25 ml media.


Keywords


bioaktivitas; makroalga; korosi microbial; T. ferooxidans

Full Text:

PDF

References


Affifah, I., Warganegara, F. M., & Bundjali, B. (2016). Uji Kualitatif Dan Kuantitatif Ekstrak Bio-Korosi Pada Baja Karbon. EduChemia, 1(2), 110–123.

Bazes, A., Silkina, A., Douzenel, P., Faÿ, F., Kervarec, N., Morin, D., … Bourgougnon, N. (2009). Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. Journal of Applied Phycology, 21(4), 395–403. https://doi.org/10.1007/s10811-008-9382-9

Chinedu, I. (2018). Journal of Chemical , Biological and Physical Sciences Mechanism of Microbial Corrosion : A Review. (August 2016).

de Almeida, C. L. F., Falcão, H. de S., Lima, G. R. d. M., Montenegro, C. de A., Lira, N. S., de Athayde-Filho, P. F., … Batista, L. M. (2011). Bioactivities from marine algae of the genus Gracilaria. International Journal of Molecular Sciences, 12(7), 4550–4573. https://doi.org/10.3390/ijms12074550

Gu, T., Xu, D., Zhang, P., Li, Y., & Lindenberger, A. (2015). Microbiologically Influenced Corrosion and Its Impact on Metals and Other Materials. Microbiology for Minerals, Metals, Materials and the Environment, 383–408. https://doi.org/10.1201/b18124-16

Kane, S. N., Mishra, A., & Dutta, A. K. (2016). Preface: International Conference on Recent Trends in Physics (ICRTP 2016). Journal of Physics: Conference Series, 755(1). https://doi.org/10.1088/1742-6596/755/1/011001

Liu, N., Fu, X., Duan, D., Xu, J., Gao, X., & Zhao, L. (2018). Evaluation of bioactivity of phenolic compounds from the brown seaweed of Sargassum fusiforme and development of their stable emulsion. Journal of Applied Phycology, 30(3), 1955–1970. https://doi.org/10.1007/s10811-017-1383-0

Maftuch, Kurniawati, I., Adam, A., & Zamzami, I. (2016). Antibacterial effect of Gracilaria verrucosa bioactive on fish pathogenic bacteria. Egyptian Journal of Aquatic Research, 42(4), 405–410. https://doi.org/10.1016/j.ejar.2016.10.005

Nurjanah, Mala Nurilmala, Effionora Anwar, Novi Luthfiyana, T. H., Luthfiyana, N., & Hidayat, T. (2017). Identification of Bioactive Compounds of Seaweed Sargassum sp. and Eucheuma cottonii Doty as a Raw Sunscreen Cream. Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences B. Life and Environmental Sciences, 54(4), 311–318. Retrieved from https://www.researchgate.net/profile/Taufik_Hidayat28/publication/ 323162708_Identification_of_Bioactive_Compounds_of_Seaweed_Sargassum_sp_ and_Eucheuma_cottonii_Doty_as_a_Raw_Sunscreen_Cream/links/5a8385bc45851504fb3a5fae.pdf

Pramesti, R., Setyati, W. A., Zainuddin, M., & Puspita, M. (2017). Bioecology of Sargassum sp. and its Extract Bioactivity as Anti-MDR Bacteria. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 22(4), 185. https://doi.org/10.14710/ik.ijms.22.4.185-192

Rodrigues, D., Freitas, A. C., Queirós, R., Rocha-Santos, T. A. P., Saraiva, J. A., Gomes, A. M. P., & Duarte, A. C. (2017). Bioactive Polysaccharides Extracts from Sargassum muticum by High Hydrostatic Pressure. Journal of Food Processing and Preservation, 41(1), 1–12. https://doi.org/10.1111/jfpp.12977.

Ruiz, E., Aperador, W., & Mejia, A. (2014). Effects of thiobacillus ferrooxidans on corrosion of AISI 4140 Steel in presence of oil biodiesel. International Journal of Electrochemical Science, 9(11), 5937–5947.

Soe, K., Li, S. M., Liu, J. H., & Yu, M. (2011). Corrosion Behavior of 10CrNiCu Steel Influenced by Thiobacillus Ferrooxidans. Advanced Materials Research, 233–235(9), 2633–2639. https://doi.org/10.4028/www.scientific.net/amr.233-235.2633

Torres, P., Santos, J. P., Chow, F., & dos Santos, D. Y. A. C. (2019). A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Research, 37(December 2018), 288–306. https://doi.org/10.1016/j.algal.2018.12.009.

Yende, S., Chaugule, B., & Harle, U. (2014). Therapeutic potential and health benefits of Sargassum species . Pharmacognosy Reviews, 8(15), 1. https://doi.org/10.4103/0973-7847.125514.




DOI: http://dx.doi.org/10.30870/educhemia.v4i2.6047

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Isriyanti Affifah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EduChemia Indexed by:

                      

Visitor