Triple Batch Digesters in Series Method to Analyze Biogas Potential from Bioethanol Vinasse

Iqbal Syaichurrozi1*, Budiyono Budiyono2, Siswo Sumardiono2

1Department of Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon-Indonesia
2Department of Chemical Engineering, University of Diponegoro, Semarang-Indonesia

*Corresponding Author Email: iqbalsyaichurrozi@gmail.com

ARTICLE HISTORY
Received 31 March 2015
Received in revised form 22 April 2015
Accepted 24 April 2015
Available online 25 April 2015

ABSTRACT

The purpose of this study was to investigate biogas production from bioethanol vinasse using the simple method which was triple batch digester in series mode. Three digesters (A, B, C) were used in laboratory scale and carried out in 30 days respectively. The fresh rumen was added in substrates before that were put into each digester (A, B, C). Ratio of COD/N in substrates was adjusted in variation of 1436/7, 400/7, 500/7, 600/7, 700/7. The results showed that in digester A, biogas was produced in large amount a first time of fermentation. In digester B, biogas generated was less than that in digester A. Meanwhile, in digester C, biogas was not produced again. Ratio of 500/7 and 600/7 generated the most biogas volume which was 9,322 and 9,168 mL.

Keywords: Bioethanol, Biogas, Series Method, Triple Batch, Vinasse,
which is 8th day to 60th day, biogas daily was decreased continuously.

Based on that, the biogas production from vinasse need to be investigated more. Author guessed that bacteria in the digesters was death, so author studied this research to prove it. Author tried to use triple batch digesters that were arranged in series system. This research using batch digesters laboratory scale that made from polyethylene bottle with volume 5 L. Substrate was varied into some ratio of COD/N. Variables that will be put into each digester, must be added rumen fluid as provider of fresh anaerobic bacteria in substrate. Also, pH substrate was adjusted on neutral condition (pH 7.0) using NaOH 2 M before substrate put into each digester. Biogas formed and pH substrate measured once in two days using water displacement method and pH meter, respectively.

2. METHODS

2.1 Wastewater and inoculum

Vinasse used in this study was obtained from bioethanol industry. The bioethanol industry produced bioethanol using molasses as raw material. It located in Solo, Central Java, Indonesia. The vinasse contained COD of 229,250 ± 1,060 mg/L; TS of 300,942 mg/L; VS of 284,659 mg/L; pH of 3.25 ± 0.212. The cow rumen fluid was used as inoculum. The rumen obtained from slaughterhouse in fresh condition to guarantee the anaerobic bacteria was still in good condition.

2.2 Preparation substrate

According to Budiyono et al. (2014b), vinasse substrate that contains TS of 7.015 ± 0.007% can produce biogas maximally. Thus, Syaichurrozi et al. (2013) and Budiyono et al. (2014a) diluted vinasse using water with ratio of vinasse:water of 1:3 to get TS of 7.015 ± 0.007%. In the recent research, author also used vinasse that had same characteristic with vinasse of Budiyono et al. (2014b). Therefore, substrate used was with vinasse:water ratio of 1:3 (TS 7.015 ± 0.007%).

2.3 Experimental set up

Anaerobic batch digesters used were made from polyethylene bottles with volume of 5 L. The bottles were plugged using rubber plug and were equipped using valve for biogas measurement. The digesters were operated at room temperature. Biogas generated was measured by using water displacement method. In this method, digesters were connected to gas collector that usually was reserved gradual glass cylindrical. The connection between digesters and gas collector was done using tube. The gas collectors were immersed in trough of water to ensure complete sealing and biogas generated was collected by the downward displacement of water.

2.4 Experimental design

Anaerobic digesters in laboratory scale were operated in batch system and at room temperature. The volume of digesters was 5 L and the volume of substrate was 1 L. The cow rumen fluid as bacteria provider was added into the digesters as much as 10% v/v substrate (100 mL). Vinasse used had COD/N ratio of 1436/7. According to Speece (1996), the optimum range of COD/N ratio was 350/7 ~ 1000/7. Thus, author varied COD/N ratio in substrate through urea addition. Urea that contained 46% N, was used as nitrogen source. The variation of COD/N ratio in this research was 1436/7 (~205.14), 400/7 (~57.14), 500/7 (~71.43), 600/7 (~85.71), 700/7 (~100).

2.5 Experimental procedures

This research used three digesters that arranged in series system, which were digester A, B and C. Before substrates (1000 mL) were put into digester A, pH of substrates must be adjusted on 7.0 using NaOH 10 N, then rumen fluid (100 mL) was added into substrate. Fermentation process in digester A was carried out in 30 days. Biogas generated was measured every once in two days and pH of substrates was measured using pH meter every once in two days.

After 30 days in digester A, substrates (effluent of digester A) were brought in the digester B. In digester B, pH of substrates was adjusted again on 7.0 using NaOH 10 N and rumen fluid (100 mL) was added into substrate to provide anaerobic bacteria especially methanogenic bacteria in fresh condition. Fermentation in digester B was conducted in 30 days. Biogas formed and pH substrates were measured every once in two days.

After 30 days in digester A, substrates (effluent of digester B) were sent to digester C. In digester C, pH of substrates was adjusted again on 7.0 using NaOH 10 N and rumen fluid (100 mL) was added into substrate to provide methanogenic bacteria in fresh condition. Same with digester A and B, digester C was operated in 30 days. Biogas formed and pH substrates were measured every once in two days.

3. RESULTS AND DISCUSSIONS

3.1 Biogas production in digester A

Biogas formed firstly at 2nd days of fermentation for all variables. The amount of biogas production daily was increasing at 3rd – 5th days of fermentation. Furthermore, biogas production daily was decreasing until end of fermentation (Fig. 1 (a)). Sumardiono et al. (2013) stated that vinasse contained simple organic compound. In the bioethanol production process, molasses was processed through some steps such as hydrolyze, fermentation and distillation. In the hydrolyze step, complex organic compound was convert into simple organic compound such as glucose. Then, in fermentation process, simple organic compound was converted into ethanol by help of saccharomyces. In the
In first step, which was in digester A, biogas formed from variable with COD/N of 1436/7, 400/7, 500/7, 600/7, 700/7 was 2,567; 7,212; 8,448; 8,532; 5,902 mL respectively (Fig. 1 (b)). Substrate with COD/N ratio of 500/7-600/7 produced the most total biogas volume. Syaichurrozi et al. (2013) predicted ammonium formed using stoichiometry concept in the digesters at variety of COD/N substrate. Substrate with COD/N of 1436/7, 500/7, 600/7, 700/7 generated total ammonium of 3,220; 12,142; 10,672; 9,289; 6,851; 4,751 mg/L (Syaichurrozi et al, 2013). According to Speece (1996), anaerobic bacteria consumes amount of ammonium 40-
from biogas production in digester A, which variable COD/N of 1436/7 generated the less biogas cumulative than the others. That means, just a little part of organic matter in vinasse was converted into biogas in digester A. From Fig. 2, effluent (slurry) of control variable from digester A had reddish black color, while variable of 600/7 had black color. It was evidence that control variable COD/N of 1436/7 still contained many simple organic compound. The fresh vinasse had more reddish color than effluent of control variable (Fig. 1(a)). That means, the more simple organic matter in substrate, the more reddish color of substrate. However, after 36th day, biogas production was decreasing. This phenomenon was caused by VFAs formed. From Fig. 1(c), pH profile of control variable was decreasing until 3.1.

Meanwhile, biogas was formed firstly at 38th day in substrate with COD/N ratio of 600/7 and 700/7. The biogas was increasing until at 42nd day of fermentation. Furthermore, it was decreased and discharged completely at 46th day of fermentation. Total biogas volume generated in digester B for variable control was more than that for 600/7 and 700/7.

In substrate of 500/7, bacteria needed longer lag time than in substrate of 600/7 and 700/7. Biogas was formed firstly at 46th day of fermentation. While, bacteria in substrate of 400/7 needed the longest lag time than the others which was at 54th of fermentation. From this phenomenon, author concluded that the more ratio of COD/N in substrate, the faster biogas produced in digester B.

From Fig. 1(c), pH condition in substrate was decreasing during fermentation. That means, there was bacterial activity to form biogas in the digester. The decreasing pattern of profile pH was not drastically like profile pH in digester A. pH substrate was decreased from 7 until 5 in digester A just at second fermentation time, while pH substrate was decreased gradually in digester B, except variable control (COD/N of 1436/7). Variable control generated VFAs in large amount, so that pH substrate was drop. Variable control still contained simple organic matter was more than the other variable. The changing pH substrate proved that bacteria still can do activity in the digester B.

3.3 Biogas production in digester C

Digester C was operated in 30 days in room temperature. Rumen fluid was added into all substrate as fresh bacteria provider. From Fig. 1 (a) and 1 (b), biogas was not produced in all variables. Bacteria also cannot do activity in substrates during fermentation, it can be proved from Fig. 1 (c) that pH profile was not change. Substrates might be poison for bacteria because substrate contained much amount of VFAs and ammonium. The combination between VFAs and ammonium in system was very toxic for bacterial activity. From this method which was using three step (digester A, B and C), author concluded that vinasse was not treated effectively using anaerobic batch digester. Modified digester and pretreatment of vinasse must be done to increase biogas production.
4. CONCLUSION

Triple Batch Digester in series method was done to investigate the potential biogas production from vinasse in batch mode. The study was carried out in 90 days, which was 30 days in digester A, 30 days in digester B and 30 days in digester C. The results showed that, in digester A, biogas production for control variable, 400/7, 500/7, 600/7, 700/7 was 2,567; 7,212; 8,448; 8,532; 5,902 mL respectively. Whereas, in digester B, total biogas for the variables became 5,209; 8,242; 9,322; 9,168; 6,586 mL respectively. Finally, in digester C, biogas was not produced in all of variables. Bacteria could not do activities in digester C, because the substrate was toxic.

5. REFERENCES


