MODEL GASIFIKASI BIOMASSA MENGGUNAKAN PENDEKATAN KESETIMBANGAN TERMODINAMIKA STOIKIOMETRIS DALAM MEMPREDIKSI GAS PRODUSER

Hafid Alwan

Abstract


Reaksi dalam sistem gasifikasi meliputi reaksi oksidasi, bouduard, WGR, WGSR, dan metanasi. Reaksi-reaksi tersebut dapat dimodelkan melalui kesetimbangan reaksi termodinamika untuk memprediksi komposisi gas produser. Biomassa digambarkan sebagai CHxOyNz dengan agen pengoksidasi berupa udara. Produk gasifikasi yang disebut dengan gas produser terdiri atas gas CO, CO2, H2, CH4 dan N2. Model yang digunakan untuk memperkirakan gas produser adalah model homogen atau model schlapfer. Dalam model ini, persamaan reaksi yang dijadikan model reaksi adalah reaksi water gas shift (WGSR). Reaksi tersebut dapat memprediksi hampir seluruh komposisi gas produser didalam sistem gasifikasi. Rasio udara terhadap bahan bakar yang digunakan (AFR) sebesar 0,3. Nilai konstanta kesetimbangan termodinamik dari model ini sebesar K = 0,262 pada suhu kesetimbangan gasifikasi 1073K. Komposisi gas produser yang dihasilkan dari model ini yaitu CO= 24,55 %-mol H2= 12,81 %-mol CO2= 6,89 %-mol H2O= 13,74 %-mol  dan N2= 40 %-mol.


Keywords


Biomasa, Gasifikasi, Kesetimbangan termodinamik, Stoikiometris

Full Text:

PDF

References


Judd B. Feasibility of Producing Diesel Fuels From Biomass in New Zealand // Biomass. 2003. № June. P. 1–46.

Yin C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses // Fuel. 2011. Vol. 90, № 3. P. 1128–1132.

Sansaniwal S.K., Rosen M.A., Tyagi S.K. Global challenges in the sustainable development of biomass gasification: An overview // Renew. Sustain. Energy Rev. Elsevier Ltd, 2017. Vol. 80, № March 2016. P. 23–43.

Aydin E.S., Yucel O., Sadikoglu H. Numerical and experimental investigation of hydrogen-rich syngas production via biomass gasification // Int. J. Hydrogen Energy. Elsevier Ltd, 2018. Vol. 43, № 2. P. 1105–1115.

Shayan E., Zare V., Mirzaee I. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents // Energy Convers. Manag. 2018. Vol. 159, № August 2017. P. 30–41.

Cempa-Balewicz M. et al. EQUILIBRIUM MODEL OF STEAM GASIFICATION OF COAL , x // J. Sustain. Min. 2013. Vol. 12, № 2. P. 21–28.

Wang L. et al. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production // Biomass and Bioenergy. 2008. Vol. 32, № 7. P. 573–581.

Huang J., Schmidt K.G., Bian Z. Removal and conversion of tar in Syngas from woody biomass gasification for power utilization using catalytic Hydrocracking // Energies. 2011. Vol. 4, № 8. P. 1163–1177.

Adnan M.A. et al. Enhancement of hydrogen production in a modified moving bed downdraft gasifier – A thermodynamic study by including tar // Int. J. Hydrogen Energy. Elsevier Ltd, 2017. Vol. 42, № 16. P. 10971–10985.

Miccio F. et al. Biomass gasification in internal circulating fluidized beds: A thermodynamic predictive tool // Korean J. Chem. Eng. 2008. Vol. 25, № 4. P. 721–726.

Baruah D., Baruah D.C. Modeling of biomass gasification: A review // Renew. Sustain. Energy Rev. 2014. Vol. 39. P. 806–815.

Jarungthammachote S., Dutta A. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers // Energy Convers. Manag. 2008. Vol. 49, № 6. P. 1345–1356.

Huang H.-J., Ramaswamy S. Modeling biomass gasification using thermodynamic equilibrium approach. // Appl. Biochem. Biotechnol. 2009. Vol. 154, № 1–3. P. 14–25.

Bridgwater A. V. Review of fast pyrolysis of biomass and product upgrading // Biomass and Bioenergy. Elsevier Ltd, 2012. Vol. 38. P. 68–94.

Prins M.J. Thermodynamic analysis of biomass gasification and torrefaction // Library. 2005. 156 p.

Susanto H., Beenackers A.A.C.M. A moving-bed gasifier with internal recycle of pyrolysis gas // Fuel. 1996. Vol. 75, № 11. P. 1339–1347.

Smith J.M., Ness H. Van, Abbott M.M. Introduction to Chemical Engineering Thermodynamics. 2005. 817 p.

Wei L. et al. Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier // Bioresour. Technol. Elsevier Ltd, 2011. Vol. 102, № 10. P. 6266–6272.

Son Y. Il et al. Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier // Biomass and Bioenergy. Elsevier Ltd, 2011. Vol. 35, № 10. P. 4215–4220.

Olgun H., Ozdogan S., Yinesor G. Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues // Biomass and Bioenergy. Elsevier Ltd, 2011. Vol. 35, № 1. P. 572–580.

Simone M. et al. Gasification of pelletized biomass in a pilot scale downdraft gasifier // Bioresour. Technol. Elsevier Ltd, 2012. Vol. 116. P. 403–412.

Mendiburu A.Z. et al. Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models // Energy. 2014. Vol. 71. P. 624–637.

Fortunato B. et al. Thermodynamic model of a downdraft gasifier // Energy Convers. Manag. Elsevier Ltd, 2017. Vol. 140. P. 281–294.

Schuster G. et al. Biomass steam gasification - An extensive parametric modeling study // Bioresour. Technol. 2001. Vol. 77, № 1. P. 71–79.




DOI: http://dx.doi.org/10.36055/jip.v8i1.5597

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.