KONVERSI HIDROKARBON MENJADI OLEFIN MELALUI PERENGKAHAN TERMAL DAN KATALITIK

Septian Arief Nur Rahman, Anton Irawan, Teguh Kurniawan

Abstract


Proses produksi olefin (CnH2n) dengan proses perengkahan hidrokarbon dapat dibagi menjadi empat bagian utama yaitu perengkahan, pendinginan, kompresi dan pemisahan. Dua jenis produk utama olefin yang sangat dikenal, yaitu etilena dan propilena. Pada bagian awal proses produksi yaitu perengkahan yang terjadi di dalam tungku pembakaran yang merupakan tempat terjadinya pembakaran untuk mengkonversi bahan baku hidrokarbon menjadi olefin dengan bantuan uap air panas. Tungku pembakaran dibagi lagi menjadi dua bagian yaitu area radiasi dan area konveksi. Reaksi utama terjadi di area radiasi. Bahan baku yang utama, yaitu etana, propana dan nafta. Masing-masing bahan baku mempunyai rendemen produk olefin yang berbeda-beda. Disisi lain dari perengkahan hidrokarbon ini terbentuknya residu karbon. Beberapa cara untuk mengontrol pembentukan residu karbon yaitu dengan pemilihan material pipa, seperti campuran Cr-Si dengan komposisi tinggi, atau dengan pelapisan Al, Cr, Si, kemudian dengan penambahan sulfur di umpan hidrokarbon, peningkatan rasio uap panas terhadap hidrokarbon dan dengan penambahan additif. Perengkahan secara katalitik berpotensi dikembangkan lebih lanjut karena mempunyai konsumsi energi yang lebih rendah dan selektivitas olefin yang lebih fleksibel, meskipun demikian penelitian lebih jauh perludilakukan untuk memperoleh katalis yang sesuai dengan kebutuhan.
 
Kata kunci :

Keywords


Perengkahan Hidrokarbon, Tungku Api, Olefin, Residu Karbon, Termal, Katalitik

Full Text:

PDF

References


Akah, A., & Al-Ghrami M. (2015). Maximizing Propylene Production via FCC Technology. Appl. Petrochem Res. DOI 10.1007/s13203015-0104-3.

Alipour, S. M. (2016). Recent Advances in Naphtha Catalytic Cracking by Nano ZSM-5 : Review. Chinese Journal of Catalysis 37, 671-680.

Amghizar, I., Vandewalle, L. A., Geem, M. V., Marin, G. B. (2017). New Trends in Olefin Production. Engineering 3, 171-178.

Berreni, M., & Wang, M. (2011). Modelling and Dynamic Optimization of Thermal Cracking of Propane for Ethylene Manufacturing. Computers and Chemical Engineering 35, 2876-2885.

Buekens, A., & Froment, G.F. (1968). Thermal Cracking of Propane. I&C Process Design and Development, Vol 7 no 3, 435-446.

Chen, Q., Shen, B., Sun, H., Zhao, J., & Liu, J. (2019). Methanol Promoted Naphtha Catalytic Pyrolysis to light olefin on Znmodified high silicon HZSM-5 Zeolite Catalyst. The Royal Society of Chemistry 9, 20818-20828.

Corma, A., Mengual, J., & Miguel, P. J. (2012). Steam Catalytic Cracking of Naphtha over ZSM-5 zeolite for Production of Propene and Ethene: Micro and Macroscopic Implications of the Presense of Steam. Applied Catalysis A; General 417-418, 220-235.

Froment, G. F., Steene B.O., & Van Damme P.S. (1976). Thermal Cracking of Ethane and Ethane-Propane Mixtures. Ind. End. Chem. Process Des. Dev. Vol 15 no 4.

Gao, G. Y., Wang, M., Ramshaw, C., Li, X.G., & Yeung, H. (2009). Optimal Operation of Tubular Reactors for Naphtha Cracking by Numerical Simulation. Asia-Pacific Journal of Chemical Engineering, Volume 4, Isuue 6, 885-892.

Geem, M. V., Heynderickx, G. J., & Marin, B.G. (2004). Effect of Radial Temperatur Profiles on Yields in Steam Cracking. AIChE Journal, Vol. 50, No. 1.

Goethem, M. W. M., Barendregt, S., Grievink, J., Verheijen, P.J.T., Dente, M., & Ranzi, E. (2013). A Kinetic Modelling Study of Ethane Cracking for Optimal Ethylene Yield. Chemical Engineering Research and Design 91, 1106-1110.

Gujarathi, A. M., Patle, D.S., Agarwal, P., Karemore, A.L., & Babu B.V. (2009). Simulation and Analysis of Ethane Cracking Process. Proceedings of International Symposium & 62nd Annual Session of IIChE in association with International Partners. Andhra University, Visakhapatnam.

Haghighi, S. S., Rahimpour, M. R., Raeissi, S., & Dehghani, O. (2013). Investigation of Ethylene Production in Naphtha Thermal Cracking in presence of steam and Carbon Dioxide. Chemical Engineering Journal 228, 1158-1167.

Jarullah, A. T., Hadi, A. J., & Hameed S.A. (2015). Optimal Design of Industrial Reactor for Naphtha Thermal Cracking Process. Diyala Journal of Engineering Sciences, Vol.08, No. 03, 139-161.

Jeong, S. M., Byun, Y. C., Chae, J. H., & Lee, W. H. (2001). Coke formation on the surface of α-Al2O3 in the catalytic pyrolisis of naphtha. Korean J Chem Eng 18(6), 842-7.

Joo, E., Lee, K., Lee, M., & Park S. (2000). CRACKER – a PC based simulator for Industrial Cracking Furnace. Computers and Chemical Engineering 24, 1523-1528.

Konno, H., Okamura, T., Kawahara, T., Nakasaka, Y., Tago, T., & Masuda, T. (2012). Kinetics of n-Hexane Cracking over ZSM-5 zeolittes – Effect of Crystal Size on Effectiveness Factor and Catalyst Lifetime. Chemical Engineering Journal 207-208, 490-496.

Kumar, P., & Kunzru, D. (1985). Modeling of Naphtha Pyrolysis. Ind. Eng. Chem. Process Des. Dev., 24, 774-782.

Masoumi, M. E., Sadrameli, S. M., Towfighi, J., & Niaci A. (2006). Simulation, Optimization and Control of Thermal Cracking Furnace. Energy 31, 516-527.

Mehdi, S., Kamyar, K., Towfighi, D., & Jafar. (2010). Olefin Production from Liquid Hydrocarbon Thermal Cracking : Kinetics and Product Distribution. Iran J. Chem. Eng. Vol 29 no 4, 135-147.

Mjukhopadhyay, R., & Kunzru, D. (1993). Catalytic Pyrolisis of Naphtha on Calcium Aluminate Catalyst, Effect of Potassium Carbonate Impregnation. Ind. Eng. Chem. Res 32(9), 1914-20.

Mohiuddin, E., Mdleleni, M. M., & Key, D. (2018). Catalytic cracking of naphtha: The effect of Fe and Cr impregnated ZSM‑5 on olefin selectivity. Applied Petrochemical Research, https://doi.org/10.1007/s13203018-0200-2.

Niaei, A., Towfighi, J., Sadrameli, S. M., & Karimzadeh, R. (2004). The Combined Simulation of Heat Transfer and Pyrolysis Reactions in Industrial Cracking Furnace. Applied Thermal Engineering 24, 22512265.

Pant, K. K., & Kunzru, D., Catalytic Pyrolisis on n-heptane on Unpromoted and Potassium Promoted Calcium Aluminates. Chem Eng J 87, 219-25.

Parmar, K. K., Padmavathi, G., & Dash, S. K. (2018). Modelling and Simulation of Naphtha Cracker. Indian Chemical Engineer, 1-13.

Ren, T., Patel, M., & Blok, K. (2006). Olefins from Conventional and heavy feedstock : Energy use in steam Cracking and alternative process. Energy 31, 425-451.

Rosli, M., & Aziz, N. (2018). Steady state Modelling of Steam Cracking Furnace Radiant Section using Aspen PLUS. Material Today: Proceedings 5, 21780-21789.

Sadrameli, S. M. (2015). Thermal/catalytic Cracking of Hydrocarbons for the Production of Olefins : A state-of-the-art review I : Thermal Cracking review. Fuel 140, 102115.

Sadrameli, S. M. (2016). Thermal/catalytic Cracking of Hydrocarbons for the Production of Olefins : A state-of-the-art review II : Catalytic Cracking review. Fuel 173, 285297.

Shahrokhi, M., Masoumi, Esmaeil, M., Sadrameli, Mojtaba, Towfighi, & Jafar. (2003). Simulation and Optimization of Naphtha Thermal Cracking Pilot Plant. Iran J Chem & Chem Eng., Vol. 22 No. 1.

Song, J. H., Chen, P., Kim, S. H., Somorjai, G. A., Gartside, R. J., & Dautzenberg, F. M. (2002). Catalytic cracking of n-Hexane over MoO2. J Mol Catal A : Chem 184, 197-202.

Sundaram, K. M., & Froment, G. F. (1978). Modeling of Thermal Cracking Kinetics. 3. Radical Mechanisms for The Pyrolysis of Simple Paraffins, Olefins and Their Mixtures. Ind. Eng. Chem. Fundam., Vol 17 No. 3.

Tarafder, A., Lee, B. C. S., Ray, A. K., & Rangaiah, G.P. (2005). Multiobjective optimization of an Industrial Ethylene Reactor Using a nondominated Sorting Genetic Algorithm. Ind. Eng. Chem. Res. Vol 44, 124-141.

Towfighi, J., Sadrameli, M., & Niaei A. (2002). Coke Formation Mechanism and Coke Inhibiting Methods in Pyrolysis Furnace. Journal of Chemical Engineering of Japan Vol 35 No. 10, 923-937.

Zhang, N., Qiu, T., Chen, B. (2013). CFD Simulation of Propane Cracking Tube Using Detailed Radical Kinetic Mechanism. Fluid Dynamics and Transport Phenomena Chinese Journal of Chemical Engineering 21(12), 1319-1331.




DOI: http://dx.doi.org/10.36055/jip.v9i1.8132

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

 

https://nefula.com/
https://seodio.com/
https://bookofraonlinespiele.com/
https://thetural.com/
https://bluesky.namb.net/
https://belihoster.com/
https://themescorners.com/
https://143.198.203.123/
https://165.22.105.72/
https://178.128.48.164/
https://165.22.104.76/
http://puskesmassungaisarik.padangpariamankab.go.id/awp/xdana/
http://puskesmassungaisarik.padangpariamankab.go.id/awp/xdemo/
http://puskesmassungaisarik.padangpariamankab.go.id/awp/xgacor/
http://puskesmassungaisarik.padangpariamankab.go.id/awp/xthailand/
https://mbkm.uib.ac.id/awp/maxwin/
https://mbkm.uib.ac.id/awp/demo/
https://mbkm.uib.ac.id/awp/dana/
https://mbkm.uib.ac.id/awp/thailand/
https://dukcapil.gorontalokab.go.id/awp/bola/
https://dukcapil.gorontalokab.go.id/awp/dana/
https://dukcapil.gorontalokab.go.id/awp/demo/
https://dukcapil.gorontalokab.go.id/awp/gacor/
https://dukcapil.gorontalokab.go.id/awp/rtp/
https://dukcapil.gorontalokab.go.id/awp/thailand/
agencuan
bet188
bni4d
bri4d
btn4d
dragon77
ladangtoto
mega88
qqcuan
sonic77
tambang88
https://famis.ui.ac.id/application/logs/thailand/
https://360.uin-malang.ac.id/awp/dana/
https://360.uin-malang.ac.id/awp/demo/
https://360.uin-malang.ac.id/awp/thailand/
http://isaime2019.snttm.trisakti.ac.id/awp/gacor/
  • https://lhkk.ubpkarawang.ac.id/