GUIDELINES FOR WRITING JOURNAL

EduChemia: Jurnal Kimia dan Pendidikan

EduChemia: Jurnal Kimia dan Pendidikan published the research paper in the field of Chemistry and Chemistry Education. EduChemia editorial board invites teachers, lecturers, practitioners and researchers to submit manuscripts.

A. Submission of manuscripts

- 1. The Manuscripts sent to EduChemia are original manuscripts of research in chemistry and educational chemistry that have not been published in any journal either nationally or internationally or are not being proposed in other journals and are not the result of plagiarism by others as evidenced by the original statement of originality.
- 2. The manuscript is typed in Indonesian or English with Microsoft Word program, Times New Roman letter, 12 pts size, with space 1.5. The manuscript is written on an 8-20-page A4 paper.
- 3. The manuscript is uploaded online by creating an account as an author by registering through the page http://jurnal.untirta.ac.id/index.php/EduChemia/index
- 4. The manuscript is reviewed in blind review by the reviewers who have been appointed in accordance with the field of expertise The author is given an opportunity to revise the manuscript based on recommendations / suggestions from reviewers or editors. The Publishing or rejection of the manuscript will be notified in writing.

B. Writing Format

Systematics of research article in the field of Chemistry and educational chemistry consists of: Title; Author's name; Abstract and Keywords; Introduction; Method; Results and Discussion; Conclusion; and References.

- 1. The title should be short (maximum of 14 words in Indonesian and maximum 12 words in English), straightforward and informative (able to describe the main content of the writing). The title is printed in capital letters in the middle, with the size of 18 pts
- 2. Author's Name is listed without an academic degree, with the name and address of the institution, and placed under the title of the article. The author should include a correspondence or e-mail address
- 3. Abstract is written in Indonesian and English with a maximum length of 200 words containing the main issues, research objectives, methods and research results. The number of keywords is around 3-5 words or a combination of words. Abstract typed with Times New Roman font, 11 pts with single spacing
- 4. Introduction contains background, research context, literature review, state of the art, and research objectives. The entire introductory section is presented in an integrated form in paragraphs, with a length of 15-20% of the total length of the article
- 5. The method consists of research design, data sources, data collection techniques, and data analysis conducted by researchers, with a length of 10-15% of the total length of the article
- 6. Results and Discussion contains detailed descriptions of all research results along with its analysis. The results can be completed with tables, graphs, drawings and / or charts. The discussion contains the meaning of results and comparison with the theory and / or the

- results of similar research. The length of results and discussion is about 40-60% of the total length of the article.
- 7. The conclusion is the overview of the discussion which contains research findings in the form of answers to research questions. The conclusion section should also put forward the implications of research results for the development of science and technology. The conclusions are presented in paragraph form, with a length of 10-15% of the total article.
- 8. References only contains the sources referred in the manuscript. The sources of references used 80% in the form of primary sources such as scientific journals or research reports and published in the last 10 years. Citation and reference are written within the Harvard-APA style and compiled with the reference manager (Mendeley). How to write references:

Books

Herron, J. D. (2010). *The Chemistry Classroom: Formulas for Successful Teaching*. Washington DC: American Chemical Society.

Journal Article.

Stieff, M. (2011). Improving Representational Copetence using Molecular Simulations Embedded in Inquiry Activities. *Journal of Research in Science Teaching*, 48(10), 1137-1158.

Chang, H. Y. & Linn, M. C. (2013). Scaffolding Learning From Molecular Visualizations. *Journal of Research in Science Teaching*, *50*(7), 858-886.

Proceedings of Seminar/ Conference

Langitasari, I., Nursa'adah E., Namirah I. (2016, November). Inquiry Learning Implementation To Improve Generic Science Skills And Conceptual Understanding Of Pre-Service Chemistry Teachers. In *Proceeding 2nd International Conference on Education and Training*, State University of Malang, Indonesia.

Thesis

Langitasari, I. (2014). Pengaruh model dinamik dan statik pada pembelajaran inkuiri terbimbing terhadap pemahaman mikroskopik, simbolik dan mikroskopik materi larutan elektrolit dan reaksi redoks siswa kelas X SMA Laboratorium UM (Thesis, Universitas Negeri Malang).

The Referral Resources from Website

Garcia, P. (2004). *Pragmatic comprehension of high and low level language learners, TESL-EJ, vol 8, no. 2*, Retrieved August 21, 2016, from http://berkeley.edu/TESL-EJ/ej30/a!.html.

- 9. The writing of Figures and tables follow the following guidelines:
 - 1) Figures

The figures are numbered in the order in which they are presented (Fig. 1, etc.). The figure title is written at the bottom of the figure using Times New Roman font 10 with a single space (if more than one line).

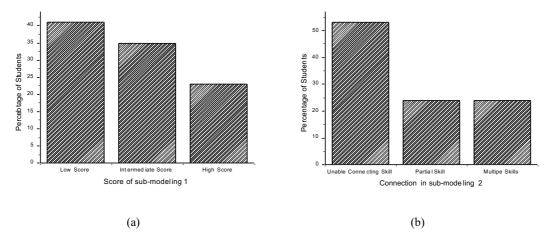


Figure 1. (a) Sub-modeling skill 1 (b) sub-modeling skill 2

2) Tables

The tables are numbered in the order in which they are presented (Table 1, etc.). The table title is written at the above of the table using Times New Roman font 10, and without a period ending. Table Captions (if any) are placed at the bottom of the table. Tables are presented without including vertical and horizontal lines.

Table 1. JPS of Redox Reaction Concept of Students in Class X and XI IPA

No	Redox Reaction Concept	T4	Class X		Class XI IPA	
		Item – Test	∑ The Student's Answer Wrong	PJS	∑ The Student's Answer Correct	PJS
1.	Oxidation Reaction					
	1) Oxidation reactions based on the	1	21	64	6	24
	gain and release of oxygen	14	14	42	2	8
	2) Oxidation reactions based on electron transfer	12	1	3	3	12
2.	Reduction Reaction					
	1) Reduction reactions based on the gain and release of oxygen	7	2	6	5	20
	2) Reduction reactions based on electron transfer	4	27	82	17	68
3.	Oxidation Number	3	7	21	4	16
		6	31	94	8	32
		9	28	85	16	64
4.	Redox Reaction	5	7	21	9	36
		11	6	18	14	56

Information:

Number of class X students = 33

Number of class XI IPA students = 25

SUBJECT INDEX

3D Holograms	205
3D printing	188
Acetic acid	33
Acid-base	117
Adsorption	176
Alcohols	239
Betanin	104
Binahong seeds	117
Biological activity	91
Bioplastics	1
Cadmium	176
Chemistry learning	1
Chemistry teacher	188
Chlorophyll	162
Citrus amblycarpa Hassk. Ochse	91
Cobalt	45
Color	162
Critical thinking skills	219
Deep eutactic solvent	239
Dehydrozingerone (DHZ)	20
E-module	219
EDTA	45
Electrolyte	239
ESD	1
Essential oil	91
Extraction	104
Extraction	117
FabLab	188
Fabric cotton	162
GC-MS	91
Gelatin	33
Green Chemistry	20
Green Chemistry	132
Green chemistry	239
Hair nutrition	72
In silico	60
In vitro	60
Indicator paper	117
Ionic Liquid	20, 132
Isotherm	176

SUBJECT INDEX

Jackfruit seeds	1
K ₂ CO ₃	149
Kaolinite	149
Kinetic	176
Learning Media	188, 205
Maceration	162
Merdeka Curriculum	132
Microwave Synthesis	20, 132
Molecular Structure	205
Nanomagnetite	45
Oleogel	72
Orange peel	72
Palm oil	149
Pandan Wangi Leaves	162
Patat leaf	60
Phosphoric acid	33
POFA	176
Problem-based learning	219
Reaction rate	219
Red Dragon Fruit	104
Shrimp shell	33
Silica	45
Simultaneous transesterification-esterification	149
Sn	149
Sulfuric acid	33
Volatile compounds	91
Watermelon peel	72
Zeolite	176
α-glucosidase	60

AUTHOR INDEX

Abdullah Yamani Noor	149
Ade Yeti Nuryantini	117
Ahmad Fathoni	60
Ahmad Mudzakir	249
Andi Imas Cahyani	33
Aninda Tri Kusumaningrum	162
Anisa Aulia Kusfianti	45
Annisa Mustika Pertiwi	20, 132
Anugrah Ricky Wijaya	45
Asep Kadarohman	188
Asep Supriatna	1
Asep Wahyu Nugraha	249
Asfiah Adiba	72
Auliya Ilmiawati	72
Ayi Furqon	104
Cica Susilawati	117
Deana Wahyuningrum	20, 132
Dwi Indah Yulianti	72
Erma Maryana	162
Ester Yuliati Cristina Purba	1
Firnanelty	33
Fitri Kurniawati	162
Fransisca Ditawati Nur Pamenang	205
Hamdil Mukhlishin	239
Hernani	1
Iis Erlina	72
Indah Langitasari	249
Iriani Bakti	219
Irma Kartika Kusumaningrum	45
Karisma Nur Shaleha	162
Laila Indriani	239
Lania Ameswari Isnaeni	162
Laras Wijayanti	60
Lisa Indriani	176
Lita Darmayanti	176

AUTHOR INDEX

Marvel	60	
Muhammad Kusasi	219	
Munzil	45	
Nelly Wahyuni	149	
Nila Tanyela Berghuis	162	
Nisa Lelita Fadilah	72	
Nuryani Rustaman	188	
Paschalia Melinda Nathasya	205	
Prina Puspa Kania	104	
Putut Marwoto	91	
Rahmat Rasmawan	91	
Resti Tri Astuti	219	
Retno Putri Febriany	72	
Rizmahardian Ashari Kurniawan	239	
Rusmansyah	219	
Samsul Ma'arif	60	
Sapnah	219	
Sari Rahmawati	33	
Sjamsiah	33	
Sri Haerani Dg Manesa	33	
Sunyono	249	
Sunyoto Eko Nugroho	91	
Syinta Khefrianti	188	
Tety Sudiarti	117	
Thamrin Usman	149	
Wiji	188	
Zulfikar Wildan Arabillah	45	

ACKNOWLEDGEMENTS

The editorial board of EduChemia: Jurnal Kimia dan Pendidikan would like to express its highest gratitude and appreciation to the peer reviewers. Their insightful comments, constructive criticisms, and meticulous reviews have played an active role in the manuscript editing process, shaping it into an article worthy of being published in Volume 9 Number 2 of 2024.

- 1. Dr. Enggah Kurniawan, S.Pd., M.Si., Chiba University Chiba-shi, Japan
- 2. Dr. Anas Santria, S.Pd, M.Si., Osaka University, Japan
- 3. Muhamad Imaduddin, M.Pd, Institut Agama Islam Negeri Kudus, Indonesia and University of Breman, Germany
- 4. Dr. rer. nat. Xiaoge Chen, M.Sc., Beijing Normal University, China
- 5. Prof. Dr. Sudarmin, M.Si., Universitas Negeri Semarang, Indonesia
- 6. La Ode Agus Salim, S.Si., M.Si., Institut Sains Teknologi dan Kesehatan (ISTEK) Aisyiyah Kendari, Sulawesi Tenggara, Indonesia
- 7. Dr. Ida Farida, M.Pd., UIN Sunan Gunung Jati Bandung, Indonesia
- 8. Dr. Ratnaningsih Eko Sardjono, M.Si., Universitas Pendidikan Indonesia, Indonesia
- 9. Dr. Diana Vanda Wellia, M.Si., Universitas Andalas, Indonesia
- 10. Dr. Indarini Dwipursitasari, M.Si., Universitas Pakuan, Indonesia
- 11. Dr. Hanhan Dianhar, M.Si., Universitas Negeri Jakarta, Indonesia
- 12. Mia Ledyastuti, M.Si., Ph.D., Institut Teknologi Bandung, Indonesia
- 13. Dr. Muhamad Salman Fareza, M.Si., Universitas Jenderal Soedirma, Indonesia
- 14. Dr. Euis Nursa'adah, M.Pd., Universitas Bengkulu, Indonesia

Your collaboration has not only improved the quality of EduChemia but has also set a high standard for future publications. We look forward to continuing this journey with you.

Redaksi EduChemia: Jurnal Kimia dan Pendidikan Department of Chemistry Education - FKIP Universitas Sultan Ageng Tirtayasa

JI. Raya Ciwaru No. 25 Cipocok Serang-Banten, 42117

E-mail : educhemia@untirta.ac.id

Website : http://jurnal.untirta.ac.id/index.php/EduChemia

ISSN 2502-4779

