Forecasting The Stock Price Movement of Bank Aladin Syariah Using The Arima Model: A Study on Indonesia’s First Islamic Digital Bank

Disfa Lidian Handayani

Abstract


This study models the stock price movement of Bank Aladin Syariah (BANK), Indonesia’s first Islamic digital bank, using the ARIMA method. As a pioneer in branchless, technology-driven sharia banking, Bank Aladin significantly contributes to enhancing financial inclusion and advancing Islamic finance. Its status as a first mover renders it particularly relevant to investors and market analysts, as its stock performance reflects broader sentiment toward technological adoption in the Islamic financial sector. The dataset comprises 694 daily closing prices sourced from Yahoo Finance, spanning the period from May 18, 2022, to March 27, 2025. Given the non-stationary nature of the data, first-order differencing was applied to attain stationarity. The ARIMA(1,1,1) model was identified as the most appropriate, producing nine-step-ahead forecasts ranging from 804.9910 to 804.9836 with gradually increasing standard errors. The model yields stable and conservative projections, offering valuable insights for investors and stakeholders in the Islamic digital banking sector.


Keywords


ARIMA; Islamic Digital Bank; Stock Price, Forecasting

Full Text:

PDF

References


Andrian, B., Simanungkalit, T., Budi, I., & Wicaksono, A. F. (n.d.). Sentiment Analysis on Customer Satisfaction of Digital Banking in Indonesia. In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 13, Issue 3). www.ijacsa.thesai.org

Ariadi, A., & Herlinawati, E. (2024). PERAMALAN HARGA SAHAM MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE: : SEBUAH STUDI KASUS PT BANK CENTRAL ASIA TBK. Prosiding Seminar Nasional Sains Dan Teknologi “SainTek,” 1(1), 58–71. https://conference.ut.ac.id/index.php/saintek/article/view/2347

Armagan, I. U. (2023). Price prediction of the Borsa Istanbul banks index with traditional methods and artificial neural networks. Borsa Istanbul Review, 23, S30–S39. https://doi.org/10.1016/j.bir.2023.10.005

Auliah, U., Rafidah, ;, & Mubarak, F. (2023). Penerapan metode ARIMA terhadap perkiraan harga saham pada perusahaan Bank Syariah Indonesia (BSI). In Journal Perdagangan Industri dan Moneter (Vol. 11, Issue 1). http://www.bankbsi.co.id

Ayoub, F., Sammour, G., & Hashem, A. (2023). Stock Market Value Estimation: An ARIMA Approach Sub-Sector Analysis at Amman Stock Exchange. Quality - Access to Success, 24(192), 18–26. https://doi.org/10.47750/QAS/24.192.03

Citterio, A., Marques, B. P., & Tanda, A. (2024). The Early Days of Neobanks in Europe: Identification, Performance, and Riskiness. Journal of Financial Services Research. https://doi.org/10.1007/s10693-024-00433-x

Fadhilah, D. N., Kankan Parmikanti, & Budi Nurani Ruchjana. (2024). Peramalan Return Saham Subsektor Perbankan Menggunakan Model ARIMA-GARCH. Jurnal Fourier, 13(1), 1–19. https://doi.org/10.14421/fourier.2024.131.1-19

Fitriani, R., Ratih, N. R., & Isnaniati, S. (2024). Analisis Peramalan Harga Saham Dengan Metode Arima Terhadap Keputusan Investasi Pada Perusahaan Perbankan Dalam Indeks LQ45. JCA (Jurnal Cendekia Akuntansi), 5(1), 75. https://doi.org/10.32503/akuntansi.v5i1.5311

Fraderic, Septiani, R. D., Dominic, V. M., Gui, A., Shaharudin, M. S., & Ganesan, Y. (2024). Analysis Factors that Influence the Intention to Use Digital Banks in Indonesia. 2nd International Conference on Emerging Trends in Information Technology and Engineering, Ic-ETITE 2024. https://doi.org/10.1109/ic-ETITE58242.2024.10493314

Gunaryati, A., Mutiara, A. B., & Puspitodjati, S. (2025). Enhancing Sharia Stock Price Forecasting using a Hybrid ARIMA-LSTM with Locally Weighted Scatterplot Smoothing Regression Approach. Journal of Applied Data Sciences, 6(1), 683–694. https://doi.org/10.47738/jads.v6i1.514

Hidayat, A., & Kassim, S. (2023). Prioritization of the Digital Banking Services in Islamic Banking. In Studies in Systems, Decision and Control (Vol. 470, pp. 969–985). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-28314-7_82

Hijrah, M. (2023). Peramalan Harga Saham Perusahaan Perbankan dengan Market Capitalization Terbesar di Indonesia Pasca-Covid19. Journal of Mathematics: Theory and Applications, 5(2), 95–99. https://doi.org/10.31605/jomta.v5i2.3238

Iqbal, M., & Ningsih, N. W. (2021). Prediksi Harga Saham Harian PT BTPN Syariah Tbk Menggunakan Model Arima dan Model Garch. Jurnal Ilmiah Ekonomi Islam, 7(03), 1573–1580. https://doi.org/10.29040/jiei.v7i3.2795

Kurniawan, Y., & Vionita, K. (2024). Examining the Factors Driving Digital Banking Adoption in Indonesia: A Modified Technology Acceptance Model Approach. Journal of Logistics, Informatics and Service Science. https://doi.org/10.33168/jliss.2024.0626

Marlina Wijayanti, D., Al-Banna, H., & Nurdany, A. (2024). IMPROVING DIGITAL BANKING THROUGH RISK ASSURANCE: TAM MODIFICATION ANALYSIS. Journal of Central Banking Law and Institutions, 3(1), 153–176. https://doi.org/10.21098/jcli.v3i1.172

OJK. (2020). INDONESIA ISLAMIC BANKING DEVELOPMENT ROADMAP.

Shin, J. W. (2022). Comparison of Customers’ Satisfaction and Loyalty between Digital Bank and Traditional Bank: Empirical Evidence from South Korea. Journal of System and Management Sciences, 12(6), 204–219. https://doi.org/10.33168/JSMS.2022.0613

Shin, J. W., Cho, J. Y., & Lee, B. G. (2020). Customer perceptions of Korean digital and traditional banks. International Journal of Bank Marketing, 38(2), 529–547. https://doi.org/10.1108/IJBM-03-2019-0084

Sudipa, I. G. I., Riana, R., Putra, I. N. T. A., Yanti, C. P., & Aristana, M. D. W. (2023). Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method. SinkrOn, 8(3), 1883–1893. https://doi.org/10.33395/sinkron.v8i3.12773

Sukartaatmadja, I., Khim, S., & Lestari, M. N. (2023). Faktor-faktor Yang Mempengaruhi Harga Saham Perusahaan. Jurnal Ilmiah Manajemen Kesatuan, 11(1), 21–40. https://doi.org/10.37641/jimkes.v11i1.1627

Tanuwijaya, E., & Oktavia, T. (2023). Analysis of the Factors Influencing Customer Switching Behaviour of The Millennials in Digital Banks. Journal of System and Management Sciences, 13(2), 122–133. https://doi.org/10.33168/JSMS.2023.0209

Temelkov, Z. (2020). DIFFERENCES BETWEEN TRADITIONAL BANK MODEL AND FINTECH BASED DIGITAL BANK AND NEOBANKS MODELS. SocioBrains, 74.

Yahya, Majid, M. S. A., & Hafasnuddin. (2021). Stock returns-inflation nexus in Indonesia: Evidence from conventional and Islamic stocks. Entrepreneurial Business and Economics Review, 9(4), 131–146. https://doi.org/10.15678/EBER.2021.090409

Zouari, G., & Abdelhedi, M. (2021). Customer satisfaction in the digital era: evidence from Islamic banking. Journal of Innovation and Entrepreneurship, 10(1). https://doi.org/10.1186/S13731-021-00151-X




DOI: http://dx.doi.org/10.35448/jiec.v9i1.32065

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright © Syi’ar Iqtishadi: Journal of Islamic Economics, Finance and Banking.

 
Syi’ar Iqtishadi: Journal of Islamic Economics, Finance and Banking has been indexed by: