Crucial Cognitive Skills in Science Education: A Systematic Review

(Received 8 January 2020; Revised 16 May 2020; Accepted 16 May 2020)

Uswatun Hasanah^{1*}, Kinya Shimizu²

^{1,2}Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima, Japan

Corresponding Author: *uswatunhasanah216@yahoo.com

DOI: 10.30870/jppi.v6i1.7140

Abstract

This systematic review focuses on identifying three common cognitive skills in science education—process skills, critical thinking skills, and reasoning skills—in order to find the crucial skills in science education. The inclusion and exclusion criteria were created. In total, 78 articles published in 17 countries, namely USA, Turkey, Indonesia, Malaysia, Iran, Palestine, Thailand, Nigeria, Jamaica, Israel, Kenya, Oman, Columbia, China, Philippines, Korea, Canada, were selected. The reviewed studies were published from 1998 to 2019. Fifty-seven studies were reported as journal publications and 21 studies came from conference proceedings. The results indicate that crucial skills exist such as science process skills (inference, measuring, identifying and controlling variable, definition operational variable, and explanation), critical thinking skills (interpreting data, inference, and evaluation), and reasoning skills (all subskills), and also revealed the relationship among them. This study concludes that the crucial skills in science education are mostly located in the reasoning skills domain.

Keywords: Cognitive Skills, Science Process Skills, Critical Thinking Skills, Reasoning Skills, Science Education

INTRODUCTION

Cognitive skills such as science process, critical thinking, and reasoning are common and most prominent to social scientists, teachers, and all facilitators in science education. Many psychologists consider cognitive skills have a close relationship with students' overall capacity to learn (Han, 2013). Cognitive skills can support the student in constructing knowledge, assumptions, competence, and the ability to solve problems and formulate results. Additionally, some researchers have stated that cognitive skills are connected to each other, either directly and/or indirectly (Lawson, 1995; Ozgelen, 2012). However, the variety of skill labels are confusing for teachers who are required to develop the more than necessary skills of students (Bailin, 2002; Lewis & Smith, 1993; Niu et al., 2013; Zimmerman, 2000).

Numerous studies have tried to identify improvement, particularly in science process skills (Huppert, Lomask, & Lazarowitz, 2002; Lati, Supasorn, & Promarak, 2012; Ongowo & Indoshi, 2013), critical thinking skills (Duran & Dokme, 2016; Shin, 1998; Zhou, Huang, & Tian, 2013), and reasoning skills (Mendoza et al., 2018; Remigio et al., 2014), and these studies have confirmed the importance of each. However, with regard to the development of cognition domain in students, it remains unclear whether these skills are related. Additionally, the literature reviewed in preparation for this paper suggests that little or no research has been conducted to identify the most crucial cognitive skills in science education. Therefore, this systematic review is focused on identifying the most crucial skill in science education among the common cognitive skills. The author intends to respond to the following research questions:

- What are the crucial skills in science process skills, critical thinking skills, and reasoning skills?
- 2. Where are the crucial skills located in the cognition stages?

Cognitive Skills

Science process skills (SPS) are mental abilities that can be practiced, learned, and developed by children through the learning process, making the students better able to meet the challenges of the 21st century (Balfakih, 2010; Osman & Vebrianto, 2013). SPS are essential to teaching the ways of reaching knowledge and they can ensure that students have a meaningful learning experience (Rauf et al., 2013). Today, the phrase "science process skills" is commonly used and based on Science-A Process Approach (SAPA); these skills can be classified into two categories: basic and integrated SPS. Germann and

Jurnal Penelitian dan Pembelajaran IPA Vol. 6, No. 1, 2020, p. 36-72

Aram (1996) in Rauf et al. (2013) defined basic skills as the intellectual foundation of scientific inquiry. Basic skills are the preconditions to integrated process skills, which are the terminal skills for problem-solving or conducting science experiments. The sub-skills of SPS are observation, inferring, measuring, communicating, classifying, predicting, controlling variables. defining operationally, formulating hypotheses and models, interpreting data, and experimenting (Padilla, 1990).

Furthermore, there are widely contrasting views of critical thinking skills (CTS). Some of the views highlight the range of perspectives around the developed aspect of education. In summary, CTS is defined as the mental act of reviewing, evaluating, or appraising something in to make an attempt judgments, inferences or meaning about it in a rational, reasoned way (McGroger, 2007). CTS is considered to be intellectually engaged, skillful, and responsible thinking. It facilitates good judgment that requires the application of assumptions, knowledge, competence, and the ability to challenge one's thinking, as well as self-correction, monitoring reasonableness the of thinking, and reflexivity. One characteristic that uniquely defines CTS is that individuals are capable of stepping back and reflecting on the quality of their thinking (Niu et al., 2013). In this research, the authors adapted the core idea of CTS from Facione (1990), who provided in much more detail the descriptors of the associated characteristics. The subskills of CTS are interpretation, analysis, evaluation, inference, explanation, and self-regulation.

The last cognitive skill is reasoning skills (RS) from Lawson (2000), who developed the theory based on psychologists' theory of cognitive development in the last two stagesempirical-inductive (EI) thought and hypothetical-deductive (HD) thought. EI thinking patterns enable the child to order accurately and describe perceptible objects, events. and situations within their world. In this stage, the child starts using language for their logical reasoning. Conservation was taken as one of the subskills in RS. Meanwhile, HD thinking patterns allow the adolescent to go beyond descriptions create and hypothetical and test explanations for what is encountered (Lawson, 1995). The subskills in RS, based on Lawson (2000),are conservation law (EI), proportional reasoning (HD1), identification and control of variables (HD2), probabilistic reasoning (HD3), correlational

reasoning (HD4), and hypotheticaldeductive reasoning (HD5).

Relationships among Cognitive Skills

As mentioned above, the theory of cognitive development has been established by many psychologists. Piaget (1966) investigated cognitive development in terms of how the child perceives the environment and the world based on observation and interview. According to Piaget's theory, cognitive development can be divided into four stages, based on age. This systematic review focuses on the last two stages (concrete operational and formal operational) that were previously introduced as EI and HD. Concrete reasoning begins from seven or eight years of age and applies a new level, such as naming, describing, and classifying; formal operational reasoning begins from adolescence and older. In this stage, some children become increasingly capable of using

language to apply the deductive pattern of thinking to hypothetical rather than empirical representations. The epistemology of the concrete reasoning stage thinker is one of observation: What causes events? In order to find an answer to this question, the child (or the inquirer) would have to observe some event(s). The epistemology of the formal reasoning stage thinker is vastly different: What causes events? To find the answer, one must first mentally create several possible causes, deduce their potential consequences, and then observe the results of experimental manipulations to support or reject the possibilities (Lawson, 1995). The term formal RS is typically used by researchers to define more complex skills such as SPS and CTS. For the purposes of this study, the details of the relationship among SPS, CTS, and RS illustrated Figure are in 1.

Figure 1. Conceptual framework of relationships among cognitive skills

Jurnal Penelitian dan Pembelajaran IPA Vol. 6, No. 1, 2020, p. 36-72

This model involves five groups, based on the skill's pattern, as listed below:

- Observation, measuring, communicating, classification, defining operational variable;
- Identification and controlling variable (HD2), predicting (HD3), formulating hypothesis (HD5), experimental design (HD5), conducting experiment (HD5);
- Interpreting data (HD1), inference (HD4), analysis (HD4);
- Simple explanation(conservation/EI), explanation (HD5), evaluation (HD5);
- 5. Self-regulation.

The first group (observation, measuring, communicating, classification, defining the operational variable) is characteristic of the basic SPS (Padilla, 1990). This group is a part of the empirical thinking stage but does not include RS or CTS. The second group paints the relationship between SPS RS. and which cover the identification and controlling variable (HD2) and predicting skills (HD3) (Han, by 2013), followed formulating hypothesis, experimental design and conducting experiment that are covered under hypothetical deductive reasoning (HD5). Ozgelen (2012) revealed that the term formal RS is typically used by

researchers to define more complex skills and integrated SPS.

The third group talks about the relationship among SPS, CTS, and RS consisting of two skills: (i) Interpreting data (HD1) and (ii) inference (HD4) and analysis (HD4). The fourth group states the relationship between CTS and RS in terms of explanation skills which is divided into two: simple explanation (EI) and explanation (HD5) and evaluation (HD5). The fifth group is self-regulation that helps the student arrange a strategy to find the solution. This skill includes the CTS group but not the other two cognitive skills.

METHOD

A systematic literature review identifies, selects, synthesizes, and appraises the studies that meet the prespecified inclusion criteria for investigating the status of current research, based on research objectives (Knoll et al., 2018). This study consisted of several processes: (a) creating the detail of criteria for inclusion and exclusion empirical studies, (b) conducting literature search in electronic databases, based on the inclusion criteria, (c) finalizing the literature research and reading the details of each study, (d) identifying the pattern of the studies, and (e) synthesizing the pattern in order to answer the research questions.

Inclusion Criteria

To conduct the systematic review, the following inclusion and exclusion criteria were established: (a) The studies should conduct empirical research for both qualitative and quantitative, (b) the studies should focus on improving cognitive skills in science education (SPS, CTS, and RS), (c) the skill dimension for each cognitive skill should be based on the experts Michael J. Padilla for science process, lls, Peter Facione for CTS, and Anton E. Lawson for RS, or at least clearly explain the subskill's definition, (d) the studies results need to clearly mention the detailed progress of each subskill in order to fit the objectives and answer the research questions of this systematic review, (e) the sample of the studies should include students from primary to university levels, (f) the studies should be published in full-text jounals as a journal article or conference proceeding, (g) the studies should be published in English and Indonesian, and (h) there was no time restriction for the studies.

Literature Search and Analysis

The literature search on electronic databases was conducted through Education Resources Information Center (ERIC), Scopus, Web of Science and Google Scholar using every conceivable variety of keywords such as "Cognitive", "Process skill", Critical

Jurnal Penelitian dan Pembelajaran IPA Vol. 6, No. 1, 2020, p. 36-72

skill", "Reasoning thinking skill", "Science education", and "Students" without time restriction. At first identification mentioned using the electronic databases, 696 potential articles were found, as shown in Figure 2.

Afterwards, the authors conducted title and abstract screening. It showed 288 articles eligible for full-text screening, and it finally resulted in 78 articles that were ready to be reviewed—32 articles for SPS, 34 articles for CTS, and 12 articles for RS.

In analyzing the data process, the researchers conducting data extraction outlined overview with an characteristics including (a) author and sample size, (b) country, (c) institution, (d) design (measurement and instrument), and (e) findings. The approach adopted for data analysis and reporting was a narrative content analysis based on the expert recommendation from Knoll et al. (2018), to avoid the studies being too heterogeneous in terms of design or the outcome analyzed (Popay et al., 2006). To address the first research question, the findings from the selected studies in this systematic review were divided into two categories-good and crucial. The good category covers all the subskills that obtain a high mean score or the greatest improvement during the intervention, or a high rate or frequency for being an essential subskill from the study participants. Meanwhile, the crucial category includes the crucial subskills that obtain the lowest mean scores or improvement (decreasing), or a low rate or frequency. For the second research question, the authors analyzed whether all crucial subskills in one cognitive skill can also become the crucial subskills for the other cognitive skills, and how they are related, based on the model we created in Figure 1.

Figure 2. Flowchart of literature

RESULTS AND DISCUSSION

Based on what has been mentioned in the introduction, this systematic review focused on identifying three cognitive skills-SPS, CTS, and RS. In total, 78 articles were selected from 17 countries, namely the USA, Turkey, Indonesia, Malaysia, Iran, Palestine, Thailand, Nigeria, Jamaica, Israel, Kenya, Oman, Columbia, China,

Philippines, Korea, and Canada. The reviewed studies were published from 1998 to 2019, 57 of which were journal publications and 21 conference proceedings. In the following paragraphs, the author specifies each skill as a finding in this systematic review.

Crucial Domains in Science Process Skills

Under SPS, 32 studies were reviewed with the characteristics (author

and sample size, country, institution, design, measurement and instrument, and findings), showed in Table 1.

Author			Design	
(Sample	Country	Institution	(Measurement	Findings
Size)			Instrument)	
Ozturk et al. (2010) (n = 828)	Turkey	Eskisehir Osmangazi University	 Experimental Questionnaire Grade 7th, secondary school 	Recording data skill, observation, classification, measure, and data explication, formulating a hypothesis, modelling, decision skill achieved at a high level
Zeidan & Jayosi (2015) (n = 159)	Pales- tine	Al-Quds University	 Experimental Questionnaire Grade 10th, secondary school 	Inference, experimenting, changing variable and controlling number and space relations, prediction, and variable definition achieved at middle and low levels. Observation skill, predicting, measuring, data interpreting, communicating, hypothesizing skill get high rank
			Sentoor	Classifying skill, controlling variable and experimentation skills get low rank.
Yilmaz (2019) (n = 332)	Turkey	Karamanog lu Mehmetbey University	 Experimental Questionnaire Grade 3rd, 4th, primary 	Observation, classification, communication skills got a high level
			school	Inference, measurement, and prediction skills got a low level.
Kamba et al. (2018) (n =	Nigeria	Kebbi State University of Science and	 Experimental Questionnaire Secondary school 	Observation skill, measuring, predicting, and data interpreting skill got high rank.
203)		Technology		Communicating skills, classifying, controlling variables and hypothesising, and experimentation skills got a low rank.
Duruk et al. (2017) (n = 307)	Turkey	Adiyaman University	 Survey Method and document analysis Grade 5th, 6th, 7th, 8th, 	Observation skill, communicating, classifying, interpreting data, experimenting, and modelling skills was the most represented Inferring, measuring, predicting, controlling
Jurnal Penel	itian dan Pei	nbelajaran IPA		Hasanah & Shimizu

Table 1. The Characteristics of 32 Included Studies under SPS

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
Tekerci and Kandir (2017) (n = 40)	Turkey	-	primary school • Quasi- experimen-tal • Questionnaire • Preschool and Nursery	variables, defining operationally, formulating hypothesis skills scored least. Observation, comparison, classification, measurement, communication, inference, predicting skill showed statistically significant difference
Ting and Siew (2014) (n = 119)	Malay- sia	Universiti Malaysia Sabah	 Quasi- Experimental Questionnaire Grade 5th, primary school 	Observing skill, communicating, and classifying skill showed the greatest improvement. Inferring skill, predicting, and controlling variables skill have the least increment
Sahhyar and Febriani (2017) (n = 62)	Indo- nesia	State University of Medan	 Quasi- Experimental Observation sheet Grade 11th, secondary school 	Observing skills, questioning, interpreting, classifying, predicting, communicating, planning, applying concept, generalizing skill had the highest percentage average. Inferring skill and making hypothesis skills had the
Gultepe and Kilic (2015) (n = 34)	Turkey	Dumlupina r University	 Quasi- experimental Questionnaire Grade 11th, secondary school 	lowest percentage average. Forming data table skill, graph drawing, graph interpretation, determining the variables and building up a hypothesis, changing, and controlling variables skill got the significant effect of the treatment.
Harahap et al. (2019) (n = 94)	Indo- nesia	State University of Medan	 Quasi- Experimental Questionnaire Biology program Faculty of Mathematics and Science, University level 	Designing experiments skill had no statistically significant difference. All results in all indicators of SPS showed significant differences among students. Exceptions were for asking questions skill, planning an experiment, and implementing concept skills.

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
Aydogd u (2017) (n = 1272)	Turkey	Afyon Kocatepe University	ExperimentalQuestionnairePrimary school	Primary students gained the highest success percentage in prediction skill, classification observation.
Irwanto et al. (2019) (n = 43)	Indo- nesia	Yogyakarta State University	 Quasi- experimental Questionnaire University level 	The lowest success percentag showed in communicatir skill, measurement, ar inference skill. Students obtained the highest mean rank in formulating hypothesis skill, investigating inferring, interpreting skill. The lowest in communicating skill, measuring, experimenting, identifying an controlling variables and
Beaumo nt- Walters and Soyibo (2010) (n =	Jamaica	-	 Experimental Questionnaire Grade 10th, secondary school 	observing skill. The subjects' mean score was low and unsatisfactory; their performance in decreasing order was: interpreting data, recording data, generalizing, formulating hypotheses, and identifying variables.
305) Turpin and Cage (2004) (n = 531)	Loui- siana	Louisiana Department of Education	 Quasi- Experimental Questionnaire Grade 7th, secondary school 	Identifying experimental question, designing investigation, graph data skill was a statistically significant difference in comparing both groups.
Ogan- Bekirogl u and Arslan (2014) (n = 17)	Turkey	Marmara University	 True experimental Questionnaire Pre-service physics 	Formulating hypothesis skill was no statistically significan difference in comparing both groups. Identifying variables skill, defining operationally, stating hypothesis skill was in the highest rank of performance.
(n = 17) Wahyu et al. (2017) Jurnal Penel	Indo- nesia itian dan Pe	Jember University mbelajaran IPA	teacher • Pre experimental	Designing experiment skill and data and grap interpretation skills were in the lowest rank of performance. Observation skill, measuring and communicating skill were in the excellent category. Hasanah & Shim

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
			 Observation sheet Grade 7th, secondary school 	Formulating question skill, formulating problems, formulating conclusions, classifying and analyzing data, apply concept, and making predictions skills were in less
Ates (2004) (n = 103)	Turkey	Bolu Abant Izzet Baysal University	ExperimentalQuestionnaireJunior college	category. Defining operationally, interpreting and graphing data skill was a statistically significant difference between transitional and concrete reasoners.
				Identifying & controlling variables skill and Stating hypothesis skills were not statistically significant differences between both reasoners.
Saribas and Bayram (2009) (n = 54)	Turkey	Marmara University	 Quasi- experimental Questionnaire University level 	Identifying variables, operationally defining, designing investigations were statistically significant difference means can be improved easier comparing to identifying and stating hypotheses skill as well as
Mutlu and Temiz (2013) (n = 496)	Turkey	Nigde University	 Experimental Questionnaire Secondary school 	graphing and interpreting data. The variations are observed to be statistically meaningful in terms of responding variable identification, controlled variable identification, formulating a hypothesis, variable modification, and control skill.
Osman and Vabriant	Malay- sia	The National	• Quasi- experimental	Otherwise, identifying manipulated variable skills and interpreting data skills was not statistically meaningful. A significant difference between groups in classifying skill_predicting_and informed
o (2013) (n = 96)	tian dan Der	of Malaysia	 Questionnaire Secondary school 	However, there are no significant differences in observing and communication Hasanah & Shimizu

Vol. 6, No. 1, 2020, p. 36-72

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
Jeentho ng et al. (2013) (n = 73)	Thailan d	Mahidol University	 Quasi- experimental Questionnaire Grade 11th, Secondary school 	skills. Collect data skill, and design experiment skill got the higher mean scores. Identifying variables skill and Pose question and hypothesis skill got the lowest mean
Siahaan et al. (2017) (n = 23)	Indonesi a	Indonesia University of Education	 Pre experimental Questionnaire Grade 7th, secondary school 	Only predicting skill was in the high criteria; Observing skill, summarizing, communication, and classifying skills was in
Delen and Keserci oglu (2012)	Turkey	Michigan State University	 Experimental Questionnaire Grades 6th, 7th, 8th 	From three grade, the result shows that predicting skill, formulating a hypothesis, and classifying skill were the highest represented skills.
(n = 290) Ongowo and Indoshi (2013) (n = 10)	Kenya	Maseno University	 Observation School records Secondary school 	Observing skill, Interpreting data, inferring, defining operationally, and experimenting skills were the lowest represented skills. Observing skill, inferring, communicating, interpreting data, experimenting skill was the rated highest frequency.
Lati et al. (2012) (n = 63)	Thai- land	Ubon Ratchathani University	 Experimental Questionnaire Grade 11th, secondary 	Measuring skill, classifying, predicting, controlling variables, defining operationally, formulating hypothesis skills, and formulating model skills were rated the lowest. Only identifying and controlling variables skill was identified as "excellent."
		ul de inner IDA	school	Defining operationally skill, formulating a hypothesis, experimenting, and interpreting data and drawing conclusion skills were identified as "good and fair."

Vol. 6, No. 1, 2020, p. 36-72

Author	Country	Institution	Design (Massurement	Findings
(Sample Size)	Country	Institution	(Measurement)	Findings
Akinbob ola and Afolabi (2010) (n = 10)	Nigeria	University of Uyo	 Observation School records Secondary school 	Observing skill, calculating, recording, communicating, Manipulating skill was rated highest; measuring skill, comparing, contrasting, drawing, experimenting and investigating, graphing, interpreting, deducing, and formulating model skills were rated lowest
Rauf et al. (2013) (n = 24)	Malay- sia	Universiti Malaya	 Experimental Questionnaire Grade 8th, secondary school 	Observing skill, communicating, and experimenting skill was the highest frequency and percentage that inculcate in the lesson.
Huppert et al. (2002) (n = 181)	Israel	University of Haifa Tivon	 Experimental Questionnaire Grade 10th, secondary school 	Classification skill, measurement and use of the number, making inference, making a prediction, interpreting data, defining operationally, controlling variables, and forming hypothesis skills were the lowest frequency and percentage. Measurement skill and graph communication skill were a statistically significant difference in two cognitive stages.
Laksono et al. (2018) (n = 61)	Indo- nesia	Yogyakarta State University	 Observation Observation sheet Grade 10th, Secondary school 	Classification skill, interpreting data, prediction, evaluating hypothesis, controlling variables, selecting useful data, and designing an experiment skill were not significant in two or all cognitive stages. Indicator percentage of observing skill, planning experiment, classifying, organizing data in the table, and identifying variable skill was higher than inference and communicating skill.

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
Maison et al. (2019) (n = 130)	Indo- nesia	Jambi University	 Correlational research Observation sheet University level 	Overall basic science process skills of physical education students of Jambi University are still considered not good.
Prihatna wati, et al. (2017) (n = 138)	Indo- nesia	State University of Malang	 Quasi- experimental Questionnaire Grade 8th, secondary school 	Observing skill and conducting experiment skills got the highest average. Preparing hypothesis skills, collecting data skill, and formulating conclusion skills got the lowest average.
Molefe et al. (2016) (n = 75)	South Africa	University of KwaZulu- Natal	 Quantitative research with a qualitative component Questionnaire University level 	Observing skill, interpreting data skill, classifying skill, formulating a hypothesis, interpreting data, and experimenting skills are chosen as the most important by the participant.
				Inferring skill, measuring skill, communicating, and predicting skills are chosen as the least important in science process skills.

Figure 3. Summary of the findings of 32 included studies in SPS

In terms of first characteristic (the total sample), 6248 participants were examined in these studies that four studies are at the primary level, 20 studies are at the secondary level, and eight studies are at the university level. Secondly, the studies selected mostly comes from Turkey and Asian countries such as Indonesia, Malaysia, and Thailand. Thirdly, twenty-eight studies were conducted quantitatively experimental, pre-, true, and quasi-The experimental design. last characteristic is the finding of the studies that are summarized in Figure 3. It shown that observing skills, communicating skills, measuring, classifying skills, predicting, and making models are included in Good category. Meanwhile, it was also found that there are six sub-skills which emerged as a crucial skill. It is starting from Inference skill with 70.6% of 17 studies that conclude inference as the crucial domain in science process skills (Aydogdu, 2017; Delen & Kesercioglu, 2012; Molefe et al., 2016; Ozturk et al., 2010; Ting & Siew, 2014; Yilmaz, 2019).

In addition, the identifying and controlling variables were noted in 65% of 20 studies and were found to be a crucial skill with low mean score and low percentage of correct answer (Ates, 2004; Beaumont-Walters & Soyibo, 2010; Huppert et al., 2002; Jeenthong et al., 2013; Mutlu & Temiz, 2013; Ongowo & Indoshi, 2013; Yilmaz, 2019; Zeidan & Jayosi, 2015). Definition operational variables skill was noted in 60% of 10 studies with a low mean score (Delen & Kesercioglu, 2012; Duruk et al., 2017; Huppert et al., 2002; Lati et al., 2012; Ongowo & Indoshi, 2013; Rauf et al., 2013), formulating hypothesis emerged with 61.9% in 21 studies and was included in the crucial category (Ates, 2004; Jeenthong et al., 2013; Saribas & Bayram, 2009; Turpin & Cage, 2004).

Lastly, the experimenting skill appeared in 61.9% of 21 study findings and was put under the crucial category (Gultepe & Kilic, 2015; Kamba et al., 2018; Ogan-Bekiroglu & Arslan, 2014). The studies concluded that students in education need sufficient science physical experiences in order to improve their SPS. Duruk et al. (2017) revealed that these skills pose problems in terms of the science curriculum. It may be expressed that the broken and tricky parts of science handling abilities are influenced by the common structure of science educational modules, reflected in course substance, lesson plans, learning action, and results. Aydogdu (2017) also stated that teachers should develop students' skills in inference and

measuring by requiring the active use of these skills in the classroom.

The participants in these studies seemed to have a problem in designing and conducting the experiment, it was rather difficult for them to pose questions and hypotheses. Various issues such students' as prior knowledge, learning style, learning process, number of students in the class, time limitation must be considered for successful implementation (Jeenthong et al., 2013). In summary, the crucial subskills in SPS are mostly in the integrated domain with inference as an exception. Furthermore, the studies revealed that the curriculum has an impact on the representation of SPS, and changing it effects the representation of SPS.

Crucial Domains in Critical Thinking Skills

In this domain, 34 articles were selected to be reviewed, as listed in Table 2. These consisted 15 paper proceedings and 19 journal articles. The total sample from the selected studies was 3608 participants, who came from many levels of primary, secondary, and university. Four studies were conducted qualitatively, and 30 studies were conducted quantitatively, such as quasiexperiment and true experiment. Most of the selected studies were conducted in Asian countries, namely Malaysia, Indonesia, Thailand, Philippines, China, Korea, and Thailand, two studies were conducted in the USA, Turkey, Iran, and Oman.

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
Bagheri and Nowrozi (2015) (n = 60)	Iran	Payame Noor University	ComparativeQuestionnaireVocational university	Evaluation skill and induction skill were the most averages among students.
Dilekli (2017) (n = 225)	Turkey	Aksarary University	 Experimental Questionnaire Grade 5th to 8h 	Deduction, explanation, and analysis skills were in the lowest average. Interpretation, evaluation, and self-regulation skills emerged as the highest mean score.

Table 2. The Characteristics of 34 Included Studies in Critical thinking Skills.

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
				Analysis, inference, and explanation skills emerged as the lowest mean score.
Kumar (2017) (n = 214)	Oman	Nizwa College of Technology	 Experimental Questionnaire College students 	Assumption, deductions, and arguments skill were the highest mean score after study. Interpretations skill and inference skill were the lowest mean score after study.
Siriwat and Katwibun (2017) (n = 47)	Thailand	Chiang Mai University	 Experimental Questionnaire Grade 11th, secondary school 	Explanation issues, and evidence were the highest rated.
				context and assumptions, student's position and conclusions and outcomes were the lowest rated
Putra and Prayitno (2018) (n = 188)	Indonesia	Sebelas Maret University of Surakarta	 Quasi experimental Questionnaire Grade 11th, secondary school 	Interpretation skill, analysis, and explanation skill had the highest percentage.
				Evaluation skill, self-regulation and concluding skill had the lowest percentage.
Usmeldi, Amini, and Trisna (2017)	Indonesia	State University of Padang	ExperimentalQuestionnaireSecondary school	Analysis and induction skill had the highest percentage; inference, evaluation, and
Jurnal Penelitian dan Pe Vol. 6, No. 1, 2020, p. 3	mbelajaran IP 6-72	Ą		deduction skill Hasanah & Shimizu

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
Ramos et al. (2013) (n = 393)	Philippine s	Benguet State University	 Experimental Questionnaire, Observation sheet University school 	had the lowest percentage. Analysis, comparison, inference and evaluation skills were in the average level and below average
Kong (2014) (n = 107)	Hong Kong	The Hong Kong Institute of Education	 Experimental Questionnaire Grade 11th, secondary school 	Hypothesis identification, induction, and deduction skill had the highest mean score.
Duran and Dokme (2016) (n = 90)	Turkey	Giresun University	 Experimental Questionnaire Grade 6th, primary school 	Evaluation skill and explanation skill had the lowest mean score. In this study, the result shows a significant difference between both groups in terms of the measured analysis skill, evaluation, inference, interpretation, explanation, and self regulation
Zhou et al. (2013) (n = 119)	China	Normal University	 Quasi experimental Questionnaire Grade 12th, secondary school 	Analysis skill was statistically significant different in both groups, but evaluation skill and inference skill were not
Hairida (2016)	Indonesia	University of Tanjungpur a Pontianak	 Quasi experimental Questionnaire Grade 7th, secondary school 	Analysis skill and explanation skills had shown the highest average score.
Jurnal Penelitian dan Pen Vol. 6, No. 1, 2020, p. 3	mbelajaran IP 6-72	Ą		Hasanah & Shimizu

Shin (1998)KoreaEwha Womans UniversityExperimentalInterpretation analysis, and informed data	ce, on wn n, l ill cally both
• Secondary school were statistic significant groups.	oom
Asefi and Imani, Iran (2018) (n =) Tabriz Islamic Art University University University Evaluation s and deduction skill were non significant in groups. Inference skill experimental Questionnaire University level University Level Leve	kill on ot n both ill on n red to n,
Stephenson et al.USAFlorida Internation al University• QuasiInference ski experimental • Questionnaire • University level• Quasi experimental explanation, a explanation, a ex	ill, and skill est
Ratnadewi and Yunianti (2019) (n = 4)Indonesia Muhamma diyah University of SurabayaMeta-analysis • Observation • University levelThe result of analysis indi • University levelSurabaya• Meta-analysis • Observation • University level• Meta-analysis analysis indi • University level	n, the cated f the the vel , om kills ion, on)
Ow and Tan (2017)MalaysiaUniversity of MalayaExperimentalIt was found perform well classificationIurnal Penelitian dan Pembelaiaran IPAHasanah & S	s. to l in 1, but

Vol. 6, No. 1, 2020, p. 36-72

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
			Primary School	they are weak in analyzing, evaluating, applying, and making inference during problem- solving.
Saputri et al. (2018) (n = 294)	Indonesia	Sebelas Maret University	 Descriptive research Questionnaire Grade 12th, secondary school 	The critical thinking skill test resulted in the evaluation aspect score that reached the highest score, followed by self- regulation skill and analysis. On the other hand, interpretation skill, inference and explanation skill got the lowest percentage of students' aspects
Malik et al. (2018) (n = 60)	Indonesia	Indonesia University of Education	 Quasi experimental Questionnaire University level 	Improved critical thinking skills in groups that apply the verification labs of three moderately categorized aspects (explain, analyze, and evaluate), while the other three aspects are categorized as low (interpreting, self-regulation, and inference).
Sarasvati and Sriyati (2018) (n = 40)	Indonesia	Indonesia University of Education	 Experimental Questionnaire Grade 8th, secondary school 	It can be concluded that junior high school students are still in a position that their critical thinking skills are in enough category.
Jurnal Penelitian dan Pe Vol. 6, No. 1, 2020, p. 3	mbelajaran IP. 6-72	A		Hasanah & Shimizu

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings	
Setiawan, Malik, Suhandi, and Permatasari (2017) (n = 60)	Indonesia	Indonesia University of Education	 Quasi experimental Questionnaire University level 	Critical thinking skills aspect classified into two categories, namely medium category for explain, self- regulation and analyze and low category for interpret, inference, and evaluate.	
Hunaidah, Wasis, Prahani, and Mahdiannur (2018) (n = 56)	Indonesia	State University of Surabaya	 Experimental Questionnaire University level 	Positive results indicate an increase in collaborative critical thinking skills of physics education students, which is shown that all indicators of collaborative critical thinking skills are in high category	
Irwanto et al. (2018) (n = 48)	Indonesia	State University of Yogyakarta	 Quasi experimental Questionnaire University level 	Inference and Analysis skills got the lowest mean score comparing to the other sub skills in critical thinking skills	
Yulianti et al. (2018) (n = 25)	Indonesia	State University of Malang	 Experimental Questionnaire Grade 11th, Secondary school 	The high average scores are in interpreting, self- regulation, and explanation skill. Inference and Analysis skill got the lowest average score	
Smith et al. (2019) (n = 88)	USA	Wingate University School of Pharmacy	 Quasi experimental Questionnaire University level 	The sub-scores where the students scored highest on the test were explanation and analysis.	
Jurnal Penelitian dan Pembelajaran IPA Hasanah & Shimiz Vol. 6, No. 1, 2020, p. 36-72					

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
				Meanwhile, interpretation, inference and evaluation were the lowest in the test result.
Hussein et al. (2019) (n = 127)	Malaysia	University of Malaya	 Quasi experimental Questionnaire Grade 5th, primary school 	Explanation skill emerged as the highest mean score, and evaluation skill emerged as the lowest mean score.
Ramandha, Andayani, and Hadisaputra (2018) (n = 75)	Indonesia	University of Mataram	 Quasi experimental Questionnaire Grade 10th, secondary school 	Interpretation, Analysis, and Evaluation skill show the significance of the criteria for critical thinking skills. Inference and explanation skill have lower critically.
Amalia, Hartono, and Indaryanti (2019) (n = 30)	Indonesia	Sriwijaya University	 Descriptive research Trigonometric questions Grade 10th, secondary school 	The highest average value is in the indicators of interpretation which has an excellent category. The lowest average value is in the indicator of inference which has the poor category.
Fernandi et al. (2018) (n = 110)	Indonesia	Indonesia University of Education	 Descriptive research Questionnaire Grade 9th, secondary school 	Analysis skill had the highest mean score compared to interpreting and inference skill.
Saprudin, Liliasari, Prihatmanto, and Setiawan (2018) (n = 46)	Indonesia	Indonesia University of Education	 Survey research Questionnaire University level 	Analysis skill is in the high category, meanwhile evaluation and

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
Cahyana, Fitriani, Rianti, and Fauziyah (2018)	Indonesia	State University of Jakarta	 Qualitative research Questionnaire Grade 10th, secondary school 	explanation are in the low category. This good category shows that all students are able to meet the critical thinking ability indicator being studied by the researcher.
Yerimadesi et al. (2018) (n = 67)	Indonesia	State University of Padang	 Quasi- experimental Questionnaire Grade 11th, secondary school 	All critical thinking indicators (analysis, inference, and explanation skills) are in the "very good" category
Pamungkas, Aminah, and Nurosyid (2019) (n = 99)	Indonesia	Sebelas Maret University	 Descriptive research Questionnaire Grade 11th, secondary school 	The result shows that the percentage achievement of students' critical thinking skills in solving the static fluid problem for indicators of assessment, inference, and strategy is still low, and the indicator of clarification is quite high.
Shirazi and Heidari (2019) (n = 499)	Iran	Shiraz University of Medical Sciences	 Experimental Questionnaire University level 	The result showed that assessment, analysis, and inference skills did not significantly increase during the time.
Basri, Purwanto, As'ari, and Sisworo (2019) (n = 24) Jurnal Penelitian dan Pe	Indonesia mbelajaran IP.	State University of Malang A	Descriptive researchInterviewGrade 8th, secondary	The six critical thinking sub- skills identified, only the interpretation sub- skill was in the Hasanah & Shimizu

Vol. 6, No. 1, 2020, p. 36-72

Author (Sample			Design	
Size)	Country	Institution	(Measurement	Findings
SIZC)			Instrument)	
			SCHOOL	while the remaining five sub-skills of
				thinking were in a low category. The evaluation, self- regulation, and inference sub- skills were the sub-skills with the
				lowest percentage. It can be concluded that many students were less capable in those critical thinking sub- skills.

Besides, CTS have six subskills that have been included in this systematic review-interpreting data, analysis, inference, evaluation, explanation, and self-regulation. After conducting data extraction, three subskills were included in a crucial category in science education; the percentages are provided in Figure 4. Interpreting data (55.0% of 20 studies) was found to be one of three crucial

skills (Asefi & Imani, 2018; Kumar, 2017; Malik et al., 2018; Saputri et al., 2018; Stephenson et al., 2019).

The second skill was inference with 77.8% of 27 studies revealing a low mean score (Dilekli, 2017; Fernandi et al., 2018; Irwanto et al., 2018; Ow &

Jurnal Penelitian dan Pembelajaran IPA Vol. 6, No. 1, 2020, p. 36-72 Tan, 2017; Ramos et al., 2013; Shirazi & Heidari, 2019; Smith et al., 2019; Yulianti et al., 2018). Evaluation was with 60.7% of 28 studies confirming a low average score (Hussein et al., 2019; Kong, 2014; Ow & Tan, 2017; Putra & Prayitno, 2018; Ramos et al., 2013; Shirazi & Heidari, 2019; Smith et al., 2019; Zhou et al., 2013). Most of these studies compared the average score of each subskill after conducting different methods such as inquiry-based learning, formal logic course, peer-lead team learning, problem-based learning, knowledge learning in the digital classroom.

Crucial Domains in Reasoning Skills

The last cognitive skill is reasoning with six subskills— Hasanah & Shimizu conservation law, proportional, controlling of variable, probabilistic, correlational, and hypothetical deductive reasoning. These skills were measured in 12 studies (three paper proceedings and nine journal articles) with 31,028 total sample number, shown in Table 3.

Different from the two previous skills, all participants in this domain came from two-levels only—secondary and university—and all studies were conducted quantitatively.

As shown in Figure 5, the percentage of included studies suggest that all subskills in reasoning were in the poor category, evidenced in none of the skills obtaining more than 50% in the good category. Conservation weight and volume were found in 60% of 10 studies and 66.7% of nine, respectively, thus put under crucial. This was followed by proportional reasoning with 66.7% of nine studies, controlling of variable with 50.0% of 10 studies, probabilistic with 58.3% of 12 studies, correlational with 75% of 12 studies, and hypothetical deductive reasoning skill with 66.7% of 9 studies, thereby categorized as crucial skills in science education

(Jensen et al., 2017; Piraksa et al., 2014; Remigio et al., 2014; Ross & Cousins, 2006; Susilawati & Anam, 2017; Wulandari & Shofiyah, 2018; Yuksel, 2019).

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
(Remigi o et al., 2014) (n = 93)	Phili- ppines	Ateneo de Manila Unive- rsity	 Quasi- experimental Questionnaire Grade 10th, secondary level 	Conservation of weight and volume, and probabilistic reasoning skill got the highest mean score. Proportional reasoning, Control of variable, and Correlational reasoning skill got the lowest
(Muslim et al., 2017) (n = 104)	Indo- nesia	Indonesia Univer- sity of Education	 Research and Design Questionnaire Secondary school 	 Mean score. Only hypothetical deductive reasoning got the highest average score. Conservation, control of variable, probabilistic reasoning, and correlational reasoning got the lowest average score.
(Mendo za et al., 2018) (n = 35)	Colum- bia	Manuela Beltran Univer- sity	 Quasi- experimental Questionnaire University 	In PBL, proportional variable skill, control of variable, and probabilistic reasoning skill had shown improvement of correct answer percentage.

Table 3. The Characteristics of 12 Included Studies in Reasoning Skills.

Jurnal Penelitian dan Pembelajaran IPA Vol. 6, No. 1, 2020, p. 36-72

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
(Mendo za et al., 2018) (n = 35)	Columbi a	Manuela Beltran Universit y	 level Quasi- experimental Questionnaire University level 	Conservation skill, correlational reasoning, and hypothetical- deductive reasoning had decreased of correct answer percentage. In CL, all seven reasoning skills had decreased of correct answer percentage.
(Piraksa et al., 2014) (n = 400)	Thailan d	Khon Kaen Universit y	 Experimental Questionnaire Grade 11th, secondary school 	Conservation mass and volume skill and correlational reasoning skill showed the highest mean score.
				Proportional reasoning skills, control of variables, probabilistic reasoning, and hypothetical-deductive reasoning skill show the lowest mean score.
(Yuksel, 2019) (n = 31)	Turkey	Gazi Universit y	ExperimentalQuestionnaireUniversity level	Proportional reasoning, control of variables, and probabilistic reasoning skill got the highest means score.
(Stamm en et al., 2018) (n = 32)	USA	The Ohio State Universit y	 Experimental Questionnaire University level 	Conservation laws, correlational reasoning, and hypothetical deductive reasoning got the lowest mean score. Conservation mass and volume, probabilistic reasoning, and control of variables skill got the highest mean percentage score.
(Ross & Cousins, 2006) (n = 12)	Canada	Ontario Institute for Studies in Edu	 Experimental Questionnaire Grade 9th to 10th, secondary School 	Proportional reasoning skills, correlational reasoning, and hypothetical deductive reasoning got the lowest mean percentage score. The impact of the program was mediated by teacher commitment to improving students' correlational reasoning skills and by teacher efficacy. The program was less successful in developing students' ability to conclude correlational data.

Author (Sample Size)	Country	Institution	Design (Measurement Instrument)	Findings
(Jensen et al., 2017) (n = 30,000)	USA	Brigham Young Univer- sity	ExperimentalQuestionnaireUniversity level	Conservation of mass and probabilistic reasoning skill got the highest score of the total mean score.
50,000)				Proportional reasoning, Control of variable, Correlational reasoning, and Hypothetical deductive reasoning got the lowest score of the total mean score.
(Wuland ari & Shofiya h, 2018) (n = 18)	Indo- nesia	Universit y of Muhamm adiyah Sidoarjo	ExperimentalQuestionnaireUniversity level	Proportional reasoning and control of variables got the highest student's mastery. Conservation laws, Probabilistic reasoning, and correlational reasoning got the lowest student's mastery.
(Susilaw ati & Anam, 2017)	Indo- nesia	State Universit y of Semarang	 Pre experimental Questionnaire Grade 11th, 	Hypothetical deductive reasoning got the highest mean score with high increment.
(n = 208)			Secondary school	Correlational reasoning and Probabilistic reasoning skill got the lowest mean score.
(Rosdia na et al., 2019) (n = 60)	Indo- nesia	Indonesia Universit y of Education	 Observation Questionnaire Grade 9th, Secondary school 	Combinatorial reasoning, Correlational reasoning, and Controlling variables got a high percentage of correct answer.
				Conservation reasoning, proportional reasoning, and probabilistic reasoning got the lowest percentage of the correct answer.

Figure 4. Summary of the findings of 34 included studies in CTS Jurnal Penelitian dan Pembelajaran IPA Hasanah & Shimizu Vol. 6, No. 1, 2020, p. 36-72

Figure 5. Summary of the findings of 12 included studies in RS

Figure 6. Conceptual framework of relationships among cognitive skills

In a total, eight studies revealed the range of mean scores in order to identify the category of subskills with and without intervention. Six of eight studies were conducted to analyze learning methods such as inquiry-based learning, problem-based learning, 5E learning model, analogy-enhanced instruction extrapolate the findings of RS in science education.

The Crucial Skills among SPS, CTS, and RS

Our literature search revealed articles which showed some the relationships among cognitive skills in science education. It was found that the most crucial subskills are in groups 2, 3, and 4, as shown in Figure 6, starting from group 2 that pictures relationships between SPS and RS. In this group, it was shown that the RS covered most of integrated SPS. the subskills in including identification and controlling variable (HD2), formulating hypothesis

(HD5), experimental design (HD5), conducting experiment (HD5).

The findings from this systematic review showed that these skills are crucial skills between SPS and RS. Second, group 3 demonstrates the relationship among SPS, RS, and CTS including interpreting data (HD1), inference (HD4), and analysis skills (HD4). The last group demonstrates the relationship between RS and CTS consisting of simple explanation (conservation reasoning/EI), explanation (HD5), and evaluation (HD5). These skills are covered under RS and correlation in order to improve students' The previous achievements. study revealed that learning processes should contain some learning activities that challenge students' CTS, RS and improve their SPS in problem-solving, finding, and analyzing to establish an appropriate concept (Naimnule & Corebima, 2018).

CONCLUSION

In conclusion, the issue of cognitive skills raises important questions regarding the crucial skills for the cognition stage—SPS, CTS, and RS. SPS focuses on the whole learning process including basic and integrated SPS. Based on the findings in this systematic review, the crucial subskills are inference, measuring, identifying and controlling variable, definition operational variable, and explanation, which mostly consisted of the integrated domain. Also, CTS focuses on the evaluation of the learning process with crucial subskills, including interpreting inference. and evaluation. data. Furthermore, RS is an essential element in the learning process found under the crucial domain. In this domain, students start giving explanations or reasons with logical thinking for each hypothesis, statement, data, opinions, theory. experimental design, conclusion, etc. Moreover. after identifying their relationships, we found that most of the crucial subskills among these three cognitive skills were mostly under RS, covering process and critical thinking skills in one circle, shown in Figure 6.

It is connected to three points: (i) Most of the subskills in the integrated science process skill, (ii) interpreting data skill (HD1), analysis skill (HD4) and inference skill (HD4), (iii) explanation skill (EI/HD5) and evaluation skill (HD5). Based on this finding, it can be concluded that crucial cognitive skills in science education are in the RS domain.

REFERENCES

Akinbobola, AO & Afolabi, F 2010, 'Analysis of Science Process Skills in West African Senior Secondary School Certificate Physics Practical Examinations in Nigeria', American-Eurosian Journal of Scientific Research, vol 5, no. 4, pp. 23-47.

- Amalia, Q, Hartono, Y & Indaryanti, I 2019, 'Students' Critical Thinking Skills in Modeling Based Learning, Paper presented at the 3rd Sriwijaya University Learning and Education International Conference, Palembang, 17-18 October 2018, IOP Publishing Ltd, pp. 1-6.
- Asefi, M & Imani, E 2018, 'Effects of Active Strategic Teaching Model (ASTM) in Creative and Critical Thinking Skills of Architecture Students', *International Journal of Architectural Research*, vol. *12*, no. 2, pp. 209-22.
- Ates, S 2004, 'The Effects of Inquirybased Instruction on the Development of Integrated Science Process Skills in Trainee Primary School Teachers with Different Piagetian Developmental Levels', *Journal* of Gazi Education Faculty, vol. 24, no. 3, pp. 275-90.
- Aydogdu, B 2017, 'A Study on Basic Process Skills of Turkish Primary School Students', *Eurasian Journal of Educational Research*, vol. 67, pp. 51-70.
- Bagheri, M & Nowrozi, RA 2015, 'A Comparative Study of the Critical Thinking Skills among the Students of Accounting and Software in the Female Technical and Vocational University in the City of Borojerd', *Journal of Education and Practice*, vol. 6, no. 13, pp. 43-7.
- Bailin, S 2002, 'Critical Thinking and Science Education', *Science & Education*, vol, *11*, pp. 361-76.
- Balfakih, NM 2010, 'The Assessment of the UAE's In-service and Preservice Elementary Science Teacher in the Integrated Science Process Skills, *Procedia Social*

and Behavioral Sciences, vol. 2, no. 2, pp. 3711-5.

- Basri, H, Purwanto, As'ari, AR & Sisworo 2019, 'Investigating Critical Thinking Skill of Junior High School in Solving Mathematical Problem', *International Journal of Instruction*, vol. 12, no. 3, pp. 745-58.
- Beaumont-Walters, Y & Soyibo, K 2010, 'An Analysis of High School Students' Performance on Five Integrated Science Process Skills', *Research in Science and Technological Education*, vol. 19, no. 2, pp.133-45.
- Cahyana, U, Fitriani, E, Rianti, R & Fauziyah, S 2018, 'Analysis of Critical Thinking Skills in Chemistry Learning by Using Mobile Learning for Level X' Paper presented at the 3rd Annual Applied Science and Engineering Conference, Bandung, December 2018, IOP Publishing Ltd, pp. 1-7.
- Delen, I & Kesercioglu, T 2012, 'How Middle School Students' Science Process Skills Affected by Turkey's National Curriculum Change?', *Journal of Turkish Science Education, vol 9*, no. 4, pp. 3-9.
- Dilekli, Y 2017, 'The Relationship Between Critical Thinking Skills and Learning Styles of Gifted Students', *European Journal of Education Studies*, vol. 3, no. 4, pp. 69-96.
- Duran, M & Dokme, I 2016, 'The Effect of the Inquiry-based Learning Approach on Student's Criticalthinking Skills', *Eurasia Journal* of Mathematics, Science & Technology Education, vol. 12, no. 12, pp. 2887-908.

- Duruk, U, Akgun, A, Dogan, C & Gulsuyu, F 2017, 'Examining the Learning Outcomes Included in the Turkish Science Curriculum in Terms of Science Process Skills: Α Document Analysis with Standard-based Assessment', International Journal of Environmental & Science Education, vol. 12, no. 2, pp. 117-42.
- Facione, PA 1990, 'Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction, viewed October 2019, <https://files.eric.ed.gov/fulltext/E D315423.pdf>
- Fernandi, R A U I, Firman, H & Rusvati, L 2018. 'The Relationship among Critical Thinking Skill Measured bv Science Virtual Test, Gender, and Motivation in 9th Grade Students', Paper presented at the 4th International Seminar of Mathematics, Science. and Computer Science Education, Bandung, 14 October 2017, IOP Publishing Ltd, pp. 1-6.
- Gultepe, N & Kilic, Z 2015, 'Effect of Scientific Argumentation on the Development of Scientific Process Skills in the Context of Chemistry', Teaching International Journal of Environmental & Science vol. 10, no. 1, pp. Education. 111-32.
- Hairida 2016, 'The Effectiveness Using Inquiry-based Natural Science Module with Authentic Assessment to Improve the Critical Thinking and Inquiry Skills of Junior High School Students', Indonesian Journal of Science Education, vol. 5, no. 2, pp. 209-15.

- Han, J 2013, 'Scientific Reasoning: Research, Development, and Assessment', Doctor of Philosophy Dissertation, The Ohio State University, Ohio.
- F. Nasution, & Harahap, NEA Manurung, B 2019, 'The Effect of Blended Learning on Student's Achievement Learning and Science Process Skills in Plant Tissue Culture Course'. Journal International of Instruction, vol. 12, no. 1, pp. 521-38.
- Hunaidah, Wasis, ES, Prahani, BK & Mahdiannur. MA 2018. 'Improving Collaborative Critical Skills Thinking of Physics Education Students through Implementation of CinOASE Model', Learning Paper presented at the Mathematics, Informatics, Science. and Education International Conference, Surabaya, 21 July 2018, IOP Publishing Ltd, pp. 1-7.
- Huppert, J, Lomask, SM & Lazarowitz, R 2002, 'Computer Simulations in the High School: Students' Cognitive Stages, Science Process Skills and Academic Achievement in Microbiology', *International Journal of Science Education*, vol. 24, no. 8, pp. 803-21.
- Hussein, MH, Ow, SH, Cheong, LS & Thong, MK 2019, 'A Digital Game-based Learning Method to Improve Students' Critical Thinking Skills in Elementary Science', *IEEE Access*, vol. 7, pp. 96309-18.
- Irwanto, Saputro, AD, Rohaeti, E & Prodjosantoso, AK 2018, 'Promoting Critical Thinking and Problem Solving Skills of Preservice Elementary Teachers Hasanah & Shimizu

through Process-Oriented Guided-Inquiry Learning (POGIL)', *International Journal of Instruction*, vol. 11, no. 4, pp. 777-94.

- Irwanto, Saputro, AD, Rohaeti, E & Prodjosantoso, AK 2019, 'Instruction to Improve Critical Thinking and Scientific Process Skills among Preservice Elementary Teachers', *Eurasian Journal of Educational Research*, vol. 80, pp. 151-70.
- Jeenthong, T, Ruenwongsa, P & Sriwattanarothai, N 2013, 'Promoting Integrated Science Process Skills through Betta-live Science Laboratory', *Procedia Social and Behavioral Sciences*, vol. 116, pp. 3292-96.
- Jensen, JL, Neeley, S, Hatch, JB & Piorczynski, T 2017, 'Learning Scientific Reasoning Skills May Be Key to Retention in Science, Technology, Engineering, and Mathematics', *Journal of College Student Retention*, vol. 19, no. 2, pp. 126-44.
- Kamba, AH, Giwa, AA, Libata, IA & Wakkala, GT 2018. 'The Relationship Between Science Skills and Process Student Attitude toward Physics in Senior Secondary School in Aliero Metropolis', African Educational Research Journal, vol. 6, no. 3, pp. 107-13.
- Knoll, T, Omar, MI, Maclennan, S, Hernandez, V, Canfield, S, Yuan, Y, . . . Sylvester, R 2018, 'Key Steps in Conducting Systematic **Reviews** for Underpinning Clinical Practice Guidelines: Methodology of the European Association of Urology', European Urology, vol. 73, pp. 290-300.

- Kong, SC 2014, 'Developing Information Literacy and Critical Thinking Skills through Domain Knowledge Learning in Digital Classroom: An Experience of Practicing Flipped Classroom Strategy', *Computers & Education*, vol. 78, pp. 160-73.
- Kumar, RR 2017, 'Effectiveness of Formal Logic Course on the Reasoning Skills of Students in Nizwa College of Technology, Oman', *Journal of Education and Practice*, vol. 8, no. 7, pp. 30-5.
- Laksono, E. W. Suyanta & Rizky, I 2018, 'Problem-based Learning Implementation Develop to Critical Thinking and Science Process Skills of Madrasah Aliyah', Paper presented at the 5th International Conference on Research. Implementation, Å Education of Mathematics and Science, Yogyakarta, 7-8 May 2018, IOP Publishing Ltd, pp. 1-5.
- Lati, W, Supasorn, S & Promarak, V 2012, 'Enhancement of Learning Achievement and Integrated Science Process Skills Using Science Inquiry Learning Activities of Chemical Reaction Rates', *Procedia Social and Behavioral Sciences*, vol. 46, pp. 4471-75.
- Lawson, AE 1995, 'Science Teaching and The Development of Thinking', *The United States of America: International Thomson Publishing*.
- Lee, AT, Hairston, RV, Thames, R, Lawrence, T & Herron, SS 2002, 'Using a Computer Simulation to Teach Science Process Skills to College Biology and Elementary Majors', *Bioscene*, vol. 28, no. 4, pp. 35-42.

- Lewis, A & Smith, D 1993, 'Defining Higher Order Thinking', *JSTOR*, vol. 32, no. 3, pp. 131-7.
- Maison, Darmaji, Kurniawan, DA & Indrawati, PS 2019, 'Science Process Skills and Motivation', *Humanities & Social Sciences Reviews*, vol. 7, no. 5, pp. 48-56.
- Malik, A, Setiawan, A, Suhandi, A, Permatasari, A, Samsudin, A, Safitri, D, . . . Hermita, N 2018, 'Using Hot Lab to Increase Preservice Physics Teachers' Critical Thinking Skills Related to the Topic of RLC Circuit' Paper presented at the 4th International Seminar of Mathematics, Science and Computer Science Education, Bandung, 14 October 2017, IOP Publishing Ltd, pp. 1-6.
- McGregor, D 2007, Developing Thinking Developing Learning. New York: McGraw-Hill Companies.
- Mendoza, BJR, Diaz, MMO & Meneses, LC 2018, 'Strengthening of Reasoning Levels in Higher Education Students Through the Use of Learning Strategies (Problem-Based Learning and Collaborative Learning) Using ICT's', Electronic Journal of Research in Educational Psychology, vol. 16, no. 2, pp. 477-502.
- Molefe, L, Stears, M & Hobden, S 2016, 'Exploring Student Teachers' Views of Science Process Skills in Their Initial Teacher Education Programmes', *South African Journal of Education*, vol. 36, no. 3, pp. 1-12.
- Muslim, Suhandi, A & Nugraha, MG 2017, 'Development of Reasoning Test Instruments Based in TIMSS Framework for Measuring Reasoning Ability of Senior High Jurnal Penelitian dan Pembelajaran IPA

Vol. 6, No. 1, 2020, p. 36-72

School Student on the Physics Concept', Paper presented at the Mathematics, Science, and Computer Science Education International Seminar, Bandung, 15 October 2016, IOP Pblishing Ltd, pp. 1-5.

- Mutlu, M & Temiz, BK 2013, 'Science Process Skills of Students Having Field Dependent and Field Independent Cognitive Styles', *Educational Research and Reviews*, vol. 8, no. 11, pp. 766-76.
- Naimnule, L & Corebima, AD 2018, 'The Correlation between Metacognitive Skills and Critical Thinking Skills toward Students' Process Skills in Biology Learning', *Journal of Pedagogical Research*, vol. 2, no. 2, pp. 122-34.
- Niu, L, Behar-Horenstein, LS & Garvan, CW 2013, 'Do Instructional Interventions Influence College Students' Critical Thinking Skills? A Meta-analysis', Educational Research Review, vol.9, pp. 114-28.
- Ogan-Bekiroglu, F & Arslan, A 2014, 'Examination of the Effects of Model-based Inquiry on Students' Outcomes: Scientific Process Skills and Conceptual Knowledge', *Procedia Social and Behavioral Sciences*, vol. 141, pp. 1187-91.
- Ongowo, RO & Indoshi, FC 2013, 'Science Process Skill in the Kenya Certificate of Secondary Education Biology Practical Examinations', *Creative Education*, vol. 4, no. 11, pp. 713-7.
- Osman, K & Vebrianto, R 2013, 'Fostering Science Process Skills and Improving Achievement Hasanah & Shimizu

through the Use of Multiple Media', *Journal of Baltic Science Education*, vol. 12, no. 2, pp. 191-204.

- Ow, SH & Tan, CM 2017, 'Using a Computer Game to Assess the Critical Thinking Skills of Preschoolers', Paper presented at the 2017 IEEE Conference on s-Learning, e-Management and e-Services, Malaysia, 16-17 November 2017, IEEE, pp.1-6.
- Ozgelen, S 2012, 'Students' Science Process Skills within a Cognitive Domain Framework', *Eurasia Journal of Mathematics, Science* & *Technology Education*, vol. 8, no. 4, pp. 283-92.
- Ozturk, N, Tezel, O & Acat, MB 2010, 'Science Process Skills Levels of Primary School Seventh Grade Students in Science and Technology Lesson', *Journal of Turkish Science Education*, vol. 7, no. 3, pp. 15-28.
- Padilla, MJ, 1990), 'The Science Process Skills', *Research Matter*to the Science Teacher.
- Pamungkas, ZS, Aminah, NS & Nurosyid, F 2019, 'Analysis of Student Critical Thinking Skill in Solving Fluid Static Concept Based on Metacognition Level', Paper presented at the 9th International Conference on Physics and Its Applications, Surakarta, Indonesia, 14 Agustus 2018, IOP Publishing Ltd, pp. 1-6.
- Piraksa, C, Srisawasdi, N & Koul, R 2014, 'Effect of Gender on Students' Scientific Reasoning Ability: A Case Study in Thailand', *Procedia Social and Behavioral Sciences*, vol. 116, pp. 486-91.

- Popay, J, Roberts, H, Sowden, A, Petticrew, M, Arai, L, Rodgers, M, . . . Duffy, S 2006, Guidance on the Conduct of Narrative Synthesis in Systematic Reviews. A Product from the ESRC Methods Programme, Version 1, pp. 1-92.
- Prihatnawati, Y, Amin, M & Muhdhar, MHIA 2017, 'The Effect of Module Implementation with STAD Cooperative Learning towards Process Skills in Science and Cognitive Achievement of 8th Grade Students', *Paper presented at the International Conference on Learning Innovation, Malang, October 2017,* Atlantis Press, pp. 111-6.
- Putra, BKB & BA Prayitno, M 2018, 'The Effectiveness of Guided Inquiry and Instead Toward Students' Critical Thinking Skills on Circulatory System Materials', *Indonesian Journal of Science Education*, vol. 7, no. 4, pp. 476-82.
- Ramandha, MEP, Andayani, & Hadisaputra, S 2018. 'An Analysis of Critical Thinking Skills among Students Studying Chemistry Using Guided Inquiry Models', Paper presented at the AIP Conference Proceedings, East Java, Indonesia, AIP Publishing, pp. 1-4.
- Ramos, JLS, Dolipas, BB & Villamor, BB 2013, 'Higher Order Thinking Skills and Academic Performance in Physics of College Students: A Regression Analysis', *International Journal of Innovative Interdisciplinary Research*, no.4, pp. 48-60.
- Ratnadewi, D & Yunianti, S 2019, 'Indonesian Student Teachers' Critical Thinking Skills in Text Analysis with CDA Approach', Hasanah & Shimizu

Humanities & Social Sciences Reviews, vol. 7, no. 3, pp. 424-31.

- Rauf, RAA, Rasul, MS, Mansor, AN, Othman, Z & Lyndon, N 2013, 'Inculcation of Science Process Skills in a Science Classroom', *Asian Social Science*, vol. 9, no. 8, pp. 47-57.
- Remigio, KB, Yangco, RT & Espinosa, AA 2014, 'Analogy-Enhanced Instruction; Effects on Reasoning Skills in Science', *The Malaysian Online Journal of Educational Science*, vol. 2, no. 2, pp. 1-9.
- Rosdiana, R, Siahaan, P & Rahman, T 2019, 'Mapping the Reasoning Skill of the Students on Pressure Concept', *Paper presented at the International Conference on Mathematics and Science Education, Bandung,* IOP Publishing Ltd, pp. 1-5.
- Ross, JA & Cousins, JB, 2006, 'Enhancing Secondary School Students' Acquisition of Correlational Reasoning Skills', *Research in Science and Technological Education*, vol. 11, no. 2, pp. 191-205.
- Sahhyar, & Febriani, NH 2017, 'The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School'. Journal of Education and Practice, vol. 8, no. 5, pp. 120-6.
- Saprudin, S, Liliasari, S, Prihatmanto, AS & Setiawan, A 2018, 'Preservice Physics Teachers' Thinking **Styles** and Its Relationship with Critical Thinking Skills on Learning Diffraction', Interference and Paper presented at the International Conference on Jurnal Penelitian dan Pembelajaran IPA

Vol. 6, No. 1, 2020, p. 36-72

Mathematics and Science Education, Bandung, IOP Publishing Ltd, pp. 1-6.

- Saputri, AC, Sajidan & Rinanti, Y 2018, 'Critical Thinking Skills Profile of Senior High School Students in Biology Learning', Paper presented at the International Conference on Science Education, Bandung, 11 November 2017, IOP Publishing Ltd, pp. 1-5.
- Sarasvati, A & Sriyati, S 2018. Analysis 'Implementation of Formative Self and Peer Assessment towards Critical Thinking Skill in Junior High School', Paper presented at the International Conference on **Mathematics** and Science Education. Bandung, IOP Publishing Ltd, pp. 1-6.
- Saribas, D & Bayram, H 2009, 'Is it Possible to Improve Science Process Skills and Attitudes towards Chemistry through the Development of Metacognitive Skills Embedded within а Motivated Chemistry Lab?: A Self-regulated Learning Approach', Procedia Social and Behavioral Sciences, vol. 1, pp. 61-72.
- Setiawan, A. Malik, A. Suhandi, A & Permatasari, A 2017, 'Effect of Higher Order Thinking Laboratory on the Improvement of Critical and Creative Thinking Skills', Paper presented at the 2nd International Conference on Innovation in Engineering and Vocational Education, Manado, 25-26 October 2017. IOP Publishing ltd, pp. 1-7.
- Shin, KR 1998, 'Critical Thinking ability and Clinical Decisionmaking Skills among Senior Nursing Students in Associate and Baccalaureate Programs in Hasanah & Shimizu

Korea', Journal of Advanced Nursing, vol. 27, pp. 414-8.

- Shirazi, F & Heidari, S 2019, 'The Relationship Between Critical Thinking Skills and Learning Styles and Academic Achievement of Nursing Students', *The Journal of Nursing Research*, vol. 27, no. 4, pp. 1-7.
- Siahaan, P, Suryani, A, Kaniawati, I, Suhendi, E, & Samsudin, A 2017, 'Improving Students' Science Process Skills through Simple Computer Simulations on Linear Motion Conceptions', Paper presented at the Mathematics, Science, and Computer Science Education International Seminar, Bandung, 15 October 2016, IOP Publishing Ltd, pp. 1-5.
- Siriwat, R & Katwibun, D 2017, 'Exploring Critical Thinking in Mathematics Problem-Based Learning Classroom', Paper presented at the 40th Annual Conference of the Mathematics Education Research Group of Australasia, Melbourne, MERGA, pp. 474-81.
- Smith, L, Gilette, C, Taylor, SR, Manolakis, M, Dinkins, M & Ramey, C 2019, 'A Semester-long Critical Thinking Course in the First Semester of Pharmacy School: Impact on Critical Thinking Skills', *Currents in Pharmacy Teaching and Learning*, vol. 11, pp. 499-504.
- Stammen, AN, Malone, KL & Irving, KE 2018, 'Effects of Modeling Instruction Professional Development on Biology Teachers' Scientific Reasoning Skills', *Education Science*, vol. *119*, no. 8, pp. 1-19.

- Stephenson, NS, Miller, IR & Sadler-McKnight, NP 2019, 'Impact of Peer-Led Team Learning and the Science Writing and Workshop Template on the Critical Thinking Skills of First-Year Chemistry Students' Journal of Chemical Education, vol. 96, pp. 841-9.
- Susilawati, SME & Anam, K 2017, 'Improving Student's Scientific Reasoning and Problem-Solving Skills by the 5E Learning Model', *Journal of Biology and Biology Education*, vol. 9, no. 3, pp. 506-12.
- Tekerci, H & kandir, A 2017, 'Effects of the Sense-based Science Education Program on Scientific Process Skills of Children Aged 60-66 Months', *Eurasian Journal* of Educational Research, vol. 68, pp. 239-54.
- Ting, KL & Siew, NM 2014, 'Effects of Outdoor School Ground Lessons on Students' Science Process Skills and Scientific Curiosit', *Journal of Education and Learning*, vol. 3, no. 4, pp. 96-107.
- Turpin, T & Cage, BN 2004, 'The Effects of an Integrated, Activitybased Science Curriculum on Student Achievement, Science Process Skills, and Science Attitudes', *Electronic Journal of Literacy through Science*, vol. 3, pp. 1-17.
- Usmeldi, Amini, R & Trisna, S 2017, 'The Development of Research-Based Learning Model with Science, Environment, Technology, and Society Approaches to Improve Critical Thinking of Students', *Indonesian Journal of Science Education*, vol. 6, no. 2, pp. 318-25.

- Wahyuni, S, Indrawati, Sudarti & Suana, W 2017, 'Developing Science Process Skills and Problem-Solving Abilities Based on Outdoor Learning in Junior High School', *Indonesian Journal* of Science Education, vol. 6, no. 1, pp. 165-9.
- Wulandari, FE & Shofiyah, N 2018, 'Problem-based Learning: Effects on Student's Scientific Reasoning Skills in Science', Paper presented at the International Conference on Science education, Surabaya, 11 November 2017, IOP Publishing Ltd, pp. 1-5.
- Yerimadesi, Y, Bayharti, B, Azizah, A, Lufri, L, Andromeda, A & Guspatni, G 2018, 'Effectiveness of Acid-base Modules Based on Guided Discovery Learning for Critical Increasing Thinking Skills and Learning Outcomes of Senior High School Student', Paper presented at the 2018 International Conference on Research and Learning of Physics, Padang, Indonesia, 5-6 August 2018, IOP Publishing Ltd, pp. 1-6.
- Yilmaz, NY 2019, 'An Examination of the Relationship Between Primary School Students' Environmental Awareness and Basic Science Process Skills', *Educational Research and Reviews*, vol. 14, no. 4, pp. 140-51.
- Yuksel, I 2019, 'The Effects of Research-Inquiry Based Learning on the Scientific Reasoning Skills of Prospective Science Teachers', *Journal of Education and Training Studies*, vol. 7, no. 4, pp. 273-8.

- Yulianti, L, Fauziah, R & Hidayat, A 2018, 'Student's Critical Thinking Skills in Authentic Problem Based Learning', Paper presented at the 4th International Seminar of Mathematics, Science, and Computer Science Eductaion, Bandung, 14 October 2017, IOP Publishing Ltd, pp. 1-6.
- Zeidan, AH & Jayosi, MR 2015, 'Science Process Skills and Attitudes toward Science among Palestinian Secondary School Students', *World Journal of Education*, vol. 5, no. 1, pp. 13-24.
- Zhou, Q, Huang, Q & Tian, H 2013, 'Developing Students' Critical Thinking Skills by Task-based Learning in Chemistry Experiment Teaching', *Creative Education*, vol. 4, no. 12A, pp. 40-5.
- Zimmerman, C 2000, 'The Development of Scientific Reasoning Skills', *Developmental Review*, vol. 20, pp. 99-149.