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 Nowadays, bioplastic development become hot trends to assess environmental issues. 

Many materials have been purposed to be the best resources for bioplastic 

manufacturing. Chitosan is one of the most abundant resources in which could 

derivates from biomaterial waste called chitin. TiO2 nanoparticles incorporation within 

biomaterial presumably not only enhance its mechanical properties but also improve 

biocompatibility of medical characteristic such as bacterial annihilation. From this 

study, it was shown that small amount of TiO2 nanoparticles within chitosan bioplastic 

prove improvement of both characteristic. Nevertheless, it was also slightly increasing 

material durability to degrade. 
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1. INTRODUCTION 

 

Recent development of biodegradable plastic 

manufacturing for food preservation to also solve 

environmental issues aimed from second derivatives of 

natural ingredients like chitosan (Diaz, V. et al., 2010; 

Fathanah, dkk., 2018; Ginting, dkk., 2018; Naito et al., 

2016; Nishiyama et al., 1996; Ogawa, et el., 2019; 

Rohmawati, dkk., 2018, Kustiningsih, I., et. al., 2019). 

Chitosan is one of the biggest natural biopolymer 

sources after cellulose (Mallakpour & Madani, 2015) 

that have excellent biodegradable features, nontoxic, 

and biocompatible  (Haldorai & Shim, 2014; Mazin C., 

2015; Nikkhoo et al., 2018). Chitosan also have anti-

microbial properties and easy to produce with low price 

(Kashif & Park, 2019; Logpriya et al., 2018; Panariello, 

Coltelli, Buchignani, & Lazzeri, 2019). Compare to 

conventional plastic, chitosan has a back draw 

predominantly in its mechanical properties such as 

tensile strength and elongation (Mallakpour & Madani, 

2015)..  

Manufacturing nanocomposite chitosan with 

nanofiller such as silica, clay, and TiO2 particles 

predominantly tended to improve not only mechanical 

properties but also enhance biomedical features within 

nanocomposite material specifically for food 

preservation (de Azeredo, 2009; Kanmani & Rhim, 

2014a; Rhim, 2011; Rhim, Park, & Ha, 2013). Nowadays, 

nanofiller classified into several specific type based on 

its shape, including: nanoparticles (Kanmani & Rhim, 

2014, Kustiningsih, I., et al., 2019. ), nanofibril (Rafieian, 

Shahedi, Keramat, & Simonsen, 2014) and nanotubes 

((Diaz-Visurraga et al., 2010). Nanoparticle TiO2 

incorporation within chitosan material proven to alter 

its antimicrobial apart from other nanofiller by growth-

control and invasion of bacteria that leads to elimination 

of pathogenic microorganism (de Azeredo, 2009).  

TiO2 has been widely developed for its medical 

features such as virus, fungi, algae and cancer cell 

elimination (Chawengkijwanich & Hayata, 2008; Tsuang 

et al., 2008). Furthermore, TiO2 proven could annihilates 

several bacteria (Pseudomonas aeruginosa and 

Enterococcus faecalis bacteria (Jeffery, Peppler, Lima, & 

McDonald, 2010); Lactobacillus helveticus (Liu & Yang, 

2003)). Furthermore, there are few reports on the 

observation of pure nanoparticles TiO2 for specified 

Staphylococcus aureus elimination within chitosan 

bioplastic. The experiment of manufacturing 
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No Functional group 
Wavelength (cm-1) 

Reference Experiment 

               Cs (Dompeipen, 2017) 

1. O-H & N-H 3200 - 3500 3419.79 

2. C-H 2850 - 2960 2924.09 

3. C=O 1550 - 1950 1616.35 

4. C-O 1000 - 1300 1257.59 

5. C-N 1030 - 1230 1039.63 

Cs-Ti (Amir et al., 2016) 

1. -OH overlapping together with –
NH2 

3300 - 3600 3439.08 

2. R-NH-R 1650 - 1600 1600.92 

3. -OH deformation 1535 - 1400 1442.75 

4. Cs-TiO2 450 - 950 947.05 

 

TiO2/chitosan bioplastic and its application specifically 

for food preservation will leads to the opportunity of 

advancement bio composite material. 

 

2. METHODS 

One sample of 1-gram chitosan mixed with 1% (v/v) 

acetic acid glacial, stirred for 3 hours and homogenized 

for 30 minutes at room temperature. Followed by TiO2 

incorporation for each variation (TiO2: 0 g, 0.1 g, 0.2 g, 

0.5 g and 1 g), then stirred for 4 hours and homogenized 

for 1 hour. A solution molded into glass plate and dried 

at 80°C afterwards. 

The characterization of bioplastic was done using 

Hitachi SU-3500 Scanning Electron Microscope to assess 

surface morphology, shape smoothness and TiO2 particle 

dispersion. Prestige Shimadzu Fourier Transform Infra-

Red 8201 was used for chemical functional groups 

analysis and Universal Testing Machine to analyze 

mechanical properties such as elongation and tensile 

strength. 

Sterilized nutrient agar medium has been mixed with 

sample bioplastic. Followed by blending with 

rejuvenated Staphyloccus aureus then dissolved with 

103 and 104 solution. Thereafter, plating the mixture 

upon petri dish for 24 hours incubation for different 

environment: dark and under UV radiation. Bacteria 

colony counted afterwards by colony forming units 

(CFU). 

 

3. RESULT and DISCUSSION 

3.1. Spectrophotometer FTIR  

 

Fourier Transform Infrared Spectroscopy have 

observed functional groups analysis involving: O-H 

bond, N-H bond, C=O bond, C-O bond, and C-N bond for 

pure chitosan bioplastic sample whereas R-NH-R bond 

and Cs-TiO2 were detected for TiO2/chitosan bioplastic 

(Figure 1). 

 

 

The graph shows similarity between pure chitosan 

bioplastic sample and TiO2 incorporated chitosan 

bioplastic. Characteristics transformation of 

transmittance peak from FTIR analysis occurred as a 

result from pure chitosan bioplastic mixed with TiO2 

nanoparticles. The mixture has not only physical 

interaction but also chemical bond (Bourtoom & 

Chinnan, 2008). Compare to pure chitosan bioplastic, 

there were shifting of hydroxyl bonds, amino bonds, and 

amide bonds of TiO2 incorporated chitosan bioplastic. 

The changes caused by interaction between chitosan 

molecules and TiO2 nanoparticles (Haldorai & Shim, 

2014) which is shown by chitosan – TiO2 bonds on 450 – 950 wavelength range (Amir, Julkapli, & Hamid, 2016). 

 The spectrum shows that pure chitosan bioplastic has an O-H bonds and N-H bonds at the peak of 3419 cm-1 whereas functional groups of C-H exhibited at 2924 cm-1, C=O at 1616 cm-1, C-O at 1257 cm-1 and C-N at 1039 cm-1 respectively. On the other hand, peak spectrum of TiO2 incorporated chitosan bioplastic is a combination of each pure peak compound’s chitosan and TiO2. It could be said with certainty that there was a cross linkage between chitosan and TiO2 functional groups as for example the overlapped O-H bonds with N-H bonds at 3439 cm-1, R-NH-R at 1600 cm-1, O-H deformation at 1442 cm-1, Chitosan/TiO2 deformation at 947 cm-1. 
 

3.2. Surface layer analysis 

The results of Scanning Electron Microscope (SEM) 

describes the difference upon surface layer of pure 

chitosan bioplastic and TiO2 incorporated chitosan 

bioplastic for each composition (Figure 2). The 

morphology of pure chitosan bioplastic displays such a 

homogenous, sleek and clean without any speckles. 

However, TiO2 nanoparticles enhancement aimed 

chitosan bioplastic have a rough structure surface with 

many grains layered upon. 

 

 

 

Figure 1. FTIR spectrum of Cs dan TiO2/chitosan bioplastic  

Tabel 1. FTIR analysys of Cs and TiO2/Chitosan bioplastic 

 

 



World Chemical Engineering Journal Vol.5, No.1, (2021), pp. 18 – 24 

 

20 

 

 
Fig. 2. . Scanning Electron Microscope (SEM) image of chitosan bioplastic and TiO2 incorporate chitosan bioplastic (a) Cs (b) Cs-OH (c) Cs-0.1 Ti (d) 

Cs-0.2 Ti (e) Cs-0.3 Ti.   

 

These speckles reveal TiO2 nanoparticles dispersion 

within chitosan bioplastic matrix (Figure 2b to Figure 

2e). TiO2 nanoparticles started to exhibit regular pattern 

when the composition of TiO2 at 1 : 0.1 within chitosan 

bioplastic (Figure 2c). At ratio of 1 : 0.2 and 1 : 0.3  (Cs : 

TiO2), the distribution of TiO2 nanoparticles within 

chitosan bioplastic manifests such a fine cluster compare 

to the chitosan bioplastic surface (Figure 2d and Figure 

2e). A proper distribution of TiO2 nanoparticles within 

matrix polymer is one of key indicator of a good TiO2 

incorporated chitosan bioplastic (Diaz-Visurraga et al., 

2010). 

 

3.3. Mechanical Properties analysis (Tensile 

Strength and Elongation) 

Tensile strength and elongation tests are involved on 

mechanical property analysis of chitosan bioplastic and 

TiO2 incorporated chitosan bioplastic (Table 2, Figure 3). 

TiO2 enhancement on chitosan bioplastic reduce the 

both of mechanical features. The amount of TiO2 

nanoparticles composition within chitosan bioplastic 

change the matrix from homogenous into heterogeneous 

as appears upon surface layer. The phenomena occurred 

caused by the irregularity of TiO2 nanoparticles 

distribution within chitosan bioplastic matrix as shown 

in Figure 2b to Figure 2e. These finding also align from 

others that discovered the effect of TiO2 nanoparticles 

on mechanical properties of chitosan (Mazin C., 2015). 

Enhancement of TiO2 nanoparticles within chitosan 

bioplastic gave a positive results of mechanical 

properties improvement. For a sample with 0.1 g TiO2 

composition, tensile strength exhibited is 16.93 MPa 

(decreasing 10.55 MPa) with observed elongation is 8.67 

% (increasing 6.02%) from control sample which made 

from pure chitosan bioplastic. Furthermore, for 0.2 g 

TiO2 composition, observed tensile strength is 29.46 

(increasing 1.98 MPa) with elongation exhibited was 

8.67 % (same with 0.1 g TiO2). 

Afterwards, increasing TiO2 nanoparticles into 

chitosan bioplastic mixture seems to be declining its 

mechanical properties. It was shown that for TiO2 

composition at 0.3 g, 1 g, 2 g and 3 g, all of them have 

smaller mechanical properties rather than control 

sample of pure chitosan. These phenomena happened 

due to influence of TiO2 nanoparticles that made a 

change in matrix structure of chitosan. Pure chitosan 

bioplastic has a homogeneous matrix structure compare 

to TiO2 incorporated chitosan bioplastic (Figure 2a to 

Figure 2e). 

 

Table 2. Influence of TiO2 nanoparticles to mechanical properties chitosan bioplastic 

No Mixture Tensile Strength (MPa) Elongasi (%) 

1 Cs 27.48 2.65 

2 Cs-1 2.07 3.33 

3 Cs-1.5 4.79 2.33 

4 Cs-2 11.93 5.33 

5 Cs-0.1 Ti 16.93 8.67 

6 Cs-0.2 Ti 29.46 8.67 

7 Cs-0.3 Ti 15.39 2.33 

Fig. 3 Mechanical properties analysis (a) Tensile strength; (b) Elongation 
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3.4. Biodegradation and Antibacterial activity 

analysis 

Biodegradation analysis results after 2 months burial 

is shown in Table 3. TiO2 enhancement did not inhibit 

degradation process of chitosan bioplastic. Mass 

reducing of bioplastic sample still exhibited due to 

natural ingredient of bioplastic material (Figure 4). Mass 

reducing showed up because natural ingredient prone to 

easier to be digested by several microorganism. Thus, 

the more TiO2 nanoparticles enhanced within chitosan 

bioplastic apt to prevent the process that leads to the 

longer time required for degradation. This antimicrobial 

activity from TiO2 nanoparticles is become one of the 

features that could effectively prolong chitosan 

bioplastic endurance from aging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Biodegradation analysis of chitosan bioplastic and TiO2/chitosan bioplastic 

 

Photocatalytic TiO2 by UV irradiation has been done to 

verify antibacterial bioplastic characteristic in order to 

annihilate gram-negative bacteria and gram-positive 

bacteria including: endospore, fungi, algae, protozoa and 

also virus (Paspaltsis et al., 2006). Staphylococcus 

aureus has been used as a representation of gram-

positive bacteria. The results of antibacterial activity 

presented in Table 4. 

As by nature, chitosan bioplastic has an antibacterial 

activity features but not to eliminate the numbers of 

Stephylococcus aureus. The antibacterial properties 

come from amino functional groups that has positive 

charge which could interact with membrane cell of 

microorganism which has negative charge. This 

interaction would cause a destruction of protein and 

other intracellular constituent from microbes. Chitosan 

has been tested effectively eradicate gram-negative 

bacteria rather than gram-positive bacteria (Diaz-

Visurraga et al., 2010; Zheng et al., 2000) 

It has been proven by these experiment and the 

results that shown in Table 4, TiO2 nanoparticles 

enhancement could significantly reduce the amount of 

s.auerus bacteria that has been incubated for 24 hours. 

Interestingly, elimination of bacteria s.aureus could be 

done either by irradiation or without irradiation by UV 

lights. These kinds of characteristics also observed in 

other experiments (Diaz-Visurraga et al., 2010; Tsuang 

et al., 2008). Photocatalytic activity of TiO2 

nanoparticles can be initiated by UV irradiation that will 

release positive ion charge within chitosan bioplastic. 

These positive ion charge then will interact with lipid 

membrane of s.aureus bacteria in which have negative 

ion. 

Under UV irradiation, TiO2 nanoparticles will 

generate electron (e-) on conduction band and exhibit 

the hole (h+) on valence band. The hole will interact 

with water molecule to produce reactive radical hydroxyl (∙OH) and ∙O2 which lead to degradation of any 
organic substance like membrane barrier of cell bacteria 

(Gumiero et al., 2013). Without UV irradiation, the 

mechanism of s.aureus bacteria elimination within TiO2 

nanoparticles incorporated mixture remains unknown. 

It was presumably done by similar process in which Ag 

Sample Initial weight (g) Final weight (g) Mass losses (%) 

Cs 0.05 0.02 60.00 

Cs-0,1 Ti 0.10 0.05 50.00 

Cs-0,2 Ti 0.10 0.05 50.00 

Cs-0,3 Ti 0.14 0.09 35071 

Cs-0,4 Ti 0.15 0.10 33.33 

Cs-0,5 Ti 0.17 0.12 29.41 

 

Table 3. Influence of TiO2 nanoparticles to mass losses of chitosan bioplastic and TiO2/chitosan 
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elements become an antibacterial agent. Both of Ag and 

TiO2 have a positive charge that can interact with 

negative charge which comes from membrane barrier of 

cell bacteria (Amrulia, 2012). After 24 hours incubation, 

the number of control variable bacteria tended to be 

decreased (Figure 6) for both methods (photocatalytic 

and non-photocatalytic). On pure chitosan bioplastic, 

bacteria only occurred in several colony. In addition, for 

every sample tested using TiO2/chitosan bioplastic there 

is none of Staphylococcus aureus bacteria prone to be 

lived.  

Table 4 Antibacterial activity analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSIONS 

TiO2 incorporation within chitosan bioplastic is 

viable to be manufactured. For specified application of 

food preservation, TiO2 nanoparticles enhancement 

exhibits improvement of not only mechanical properties 

features such as tensile strength and elongation but also 

able to annihilates the number of Staphylococcus aureus 

bacteria to zero either by using photocatalytic of non-

photocatalytic method. Nano  filling TiO2 within chitosan 

bioplastic also made material slightly more durable to 

degradation compare to conventional plastic. 

 

 

 

 

 

Sample 
UV irradiation  Without radiation 

CFU (mL-1) Survival Ratio (%) CFU (mL-1) Survival Ratio (%) 

Control 2.9 x 105 100.0 2.9 x 105 100.0 

Cs 2.0 x 104 6.9 2.0 x 104 3.5 

TiO2 0.0 0.0 0.0 0.0 

Cs-0,1 Ti 0.0 0.0 0.0 0.0 

Cs-0,2 Ti 0.0 0.0 0.0 0.0 

Cs-0,3 Ti 0.0 0.0 0.0 0.0 

Cs-0,4 Ti 0.0 0.0 0.0 0.0 

Cs-0,5 Ti 0.0 0.0 0.0 0.0 

 

Figure 5. Antibacteria analysis (a)non photocataltic (b) photocatalytic under UV 
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