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 Stokes' First Problem, often referred to as the "sudden accelerated plate," was studied 
using similarity method to obtain velocity and shear stress profile by analyzing the flow 
of an infinite body of fluid near a wall that experiences sudden motion. The flow is 
assumed to be Newtonian, viscous, and incompressible, while at initial condition the 
velocity considered as zero and the condition of the flow were at rest. The obtained 
results are then numerically solved employing Simpson's approximation. Furthermore, 
this study explores variations in velocity and shear stress at the wall across different 
time intervals. The study of the velocity profile within this scenario demonstrates its 
consistency with the non-slip condition and the specified boundary conditions. 
Specifically, for t > 0, the velocity of the flow at the surface (y = 0) aligns with the plate's 
speed, while at y = ∞, the velocity decreases to zero, mirroring the initial condition. The 
findings reveal that at the moment the plate initiates its motion (t = 0), the shear stress 
reaches its maximum value. As time progresses, the shear stress at the wall gradually 
decreases. 
 
Keywords: Stokes’ first problem, shear stress, sudden accelerated plate, similarity solution method, 
Simpson’s rule, Rayleigh–Stokes problem 

 

 

1. INTRODUCTION 
 

Stokes' First Problem, often referred to as the "sudden 
accelerated plate," stands as a classic scenario in fluid 
dynamics, holding profound significance in the study of 
viscous flows. Notably, the application of the separation 
variable method to solve this problem can lead to 
physically incorrect solutions. In contrast, the similarity 
formulation, initially addressed by G. Stokes, is widely 
recognized as a more suitable approach for tackling this 
specific problem (Stokes, 1851). 

In this context, the problem involves the abrupt 
motion of a semi-infinite flat plate within a viscous fluid. 
This motion commences from a state of rest and 
accelerates rapidly to achieve a constant velocity. Such a 
phenomenon mirrors the behavior observed on the 
surface of aircraft wings during takeoff. The plate's 
motion generates a flow field imbued with intriguing 
characteristics, which serves to illuminate the 
fundamental behavior of viscous fluids subjected to 

sudden changes in boundary conditions (Bird et al., 
1961). 

Stokes' First Problem serves as a cornerstone in 
understanding the dynamics of fluid motion, offering 
valuable insights into the intricate interplay between 
viscosity, inertia, and boundary conditions. It 
significantly contributes to our understanding of 
boundary layer development, the establishment of 
velocity profiles, and the emergence of flow instabilities. 
Through meticulous analysis, experimental, and 
numerical simulations, researchers have gained a deeper 
appreciation of the complexities inherent in fluid flows 
and the pivotal role played by fundamental principles in 
elucidating these phenomena (Grift et al., 2019; Joshi & 
Bhattacharya, 2022). 

While the classic Stokes' problem remains of enduring 
interest to researchers, various modifications have been 
explored (Liu, 2008a, 2008b; Welker, 2019). One such 
adaptation involves the study of magneto-
hydrodynamics flow over a suddenly accelerated flat 
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plate. Researchers like Haque and Zaman have 
approached this problem, utilizing both analytical and 
numerical methods, to gain a deeper understanding 
(Haque & others, 2018; Zaman et al., 2014). Recent 
studies, researchers have ventured into investigating the 
behavior of flat plates that suddenly move through a 
yield-stress material and also a viscous incompressible 
fluid (Hinton et al., 2022; Kharchandy, 2018). However, 
the shear stress behavior on this problem was not much 
discussed in previous research. In this context, the 
research into shear stress in the flow remains compelling, 
especially when the plate begins its motion.  

This research, specifically, delves into the behavior of 
velocity in the vicinity of a suddenly accelerated flat plate. 
The velocity profile is obtained using the similarity 
method, as outlined in Stokes' first problem, resulting in 
a single ordinary differential equation (Schlichting, 
1979). The obtained results are then numerically solved 
employing Simpson's approximation. Furthermore, this 
study explores variations in velocity and shear stress at 
the wall across different time intervals, contributing to 
the evolving understanding of this dynamic scenario. 

 
 

 
 

Fig. 1. The viscous flow of fluid near a wall suddenly set in motion.   

 

 
 

Fig. 2. Stokes’ first problem; a stationary plate suddenly moved along x 
axis.  

 
 
2. METHODS 

 
2.1 Similarity Solution Method 

The unsteady viscous flow problem of a suddenly 
accelerated plate is the focus of this study. To elucidate, 
we consider a scenario in which the plate is initially 
stationary at t = 0, and subsequently, at t > 0, it 
commences motion within its own plane, along the x-
direction, attaining a constant velocity denoted as Uo (as 
shown in Fig. 1 and Fig. 2). 

Obtaining the solution begins by analyzing the flow of 
an infinite body of fluid near a wall that experiences 
sudden motion. This problem provides a compelling 
opportunity to showcase the utility of the similarity 
method, a mathematical approach that allows us to 
transform a complex partial differential equation into a 
more manageable single ordinary differential equation. 
This transformation simplifies the mathematical 
treatment of the problem and is an essential step in 
gaining a deeper understanding of the dynamics involved. 
 
Continuity equation 
 
𝝏𝒖

𝝏𝒙
+

𝝏𝒖

𝝏𝒚
= 𝟎 (1) 

 
Momentum equation in x-direction 
 
𝝏𝒖

𝝏𝒕
+ 𝒖

𝝏𝒖

𝝏𝒙
+ 𝒗

𝝏𝒖

𝝏𝒚
= −

𝝏𝑷

𝝏𝒙
+ 𝝊(

𝝏𝟐𝒖

𝝏𝒙𝟐
+

𝝏𝟐𝒖

𝝏𝒚𝟐
) (2) 

 
Momentum equation in y-direction 
 
𝝏𝒗

𝝏𝒕
+ 𝒖

𝝏𝒗

𝝏𝒙
+ 𝒗

𝝏𝒗

𝝏𝒚
= −

𝝏𝑷

𝝏𝒚
+ 𝝊(

𝝏𝟐𝒗

𝝏𝒙𝟐
+

𝝏𝟐𝒗

𝝏𝒚𝟐
) (3) 

 
In the context of sudden accelerated flat plate flow, it 

is reasonable to assume that the velocity in the y-
direction is negligible, especially when the flow is fully 
developed, and the pressure remains constant. Under 
these conditions, the governing equations can be 
significantly simplified, resulting in the following 
equation: 

 
𝝏𝒖

𝝏𝒕
= 𝝊

𝝏𝟐𝒖

𝝏𝒚𝟐
 (4) 

 

Since the plate is considered infinite, and the fluid domain 

is semi-infinite, there is no inherent geometric length scale 

that affects the solution. Consequently, employing 

dimensional analysis yields the following result: 

 
𝒖

𝑼𝒐
= 𝒇(𝒗, 𝒚, 𝒕) (5) 

 
The initial boundary conditions and assumptions for 

this study are as follows: 
1. The flow is assumed to be Newtonian, viscous, and 

incompressible (Ismoen et al., 2015). 
2. Initial Condition: At t < 0, the velocity component u is 

set to zero for all values of y. 
3. Boundary Condition: at y=0, u=Uo for all t>0 and at 

y=0 for all t>0. 
 
Assume that the solution in form of  

 
𝒖(𝒚, 𝒕) = 𝝓(𝒕)𝒇(𝜼)  (6) 
 

Where 𝜼 =
𝒚

𝒈(𝒕)
   

and; 
φ(t)  = function of t (time) only 
g(t)   = scaling function of t 
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f(η)   = non dimensional velocity in form of function   
(non-dimensional coordinate) 

To solve Equation 6 effectively, it is necessary to 
define each term within it. Subsequently, the equation can 
be substituted to derive the similarity solution, 
facilitating a deeper understanding of the problem at 
hand. More detailed derivation of the equation can be 
found in the (Sudarma, 2012). 

 
𝝏𝒖

𝝏𝒕
=

𝝏

𝝏𝒕
(𝝋(𝒕)𝒇(𝜼))      (7) 

 
Through the application of the chain rule, the equation 
above can be expressed as follows: 
 
𝝏𝒖

𝝏𝒕
=

𝝏

𝝏𝒕
(𝝋(𝒕)𝒇(𝜼)) = 𝝓′(𝒕)𝒇(𝜼) + 𝝓(𝒕)

𝝏𝒇′(𝜼)

𝝏𝜼

𝝏𝜼

𝝏𝒕
 (8) 

 
where, 
 

 
𝝏𝜼

𝝏𝒕
=

𝝏

𝝏𝒕
(

𝒚

𝒈(𝒕)
) = −𝜼

𝒈′(𝒕)

𝒈(𝒕)
         (9) 

 
By applying boundary condition, which states that 
𝝓(𝒕) = 𝑼𝟎 and 𝝓′(𝒕) = 𝟎, to equation 4, the equation 
undergoes simplification, resulting in: 
 
𝝏𝒖

𝝏𝒕
= −𝑼𝟎𝒇′(𝜼)𝜼

𝒈′(𝒕)

𝒈(𝒕)
 (10) 

 
When differentiating the above equation with respect to 
time (t), we obtain: 
 
𝝏𝟐𝒖

𝝏𝒕𝟐
=

𝑼𝟎

𝒈𝟐(𝒕)
𝒇"(𝜼) (11) 

 
Integrating equation 10 with respect to time (t) will yield:  
 
𝒖 = 𝑼𝟎𝒇(𝜼) (12) 

 
By substituting equations 11, 12, and 13 into equation 4, 
the solution can be written as follows. 
 

𝒇"(𝜼) +
𝒈′(𝒕)𝒈(𝒕)

𝝊
𝜼𝒇′(𝜼) = 𝟎 (13) 

 

By defining a as 
𝒈′(𝒕)𝒈(𝒕)

𝝊
 and applying integration with 

respect to t obtaining the following. 
 
𝒈𝟐(𝒕)

𝟐𝝊
+ 𝑪 = 𝒂. 𝒕 (14) 

 

𝒈(𝒕) = √𝟐𝒂𝝊𝒕  where C = 0 
 
Assuming a value of a = 2 and substituting it into equation 
14, the derivation of the following ordinary differential 
equation for η: 
 
𝒇"(𝜼) + 𝟐𝜼𝒇′(𝜼) = 𝟎 (15) 

 
To solve the equation above, let's introduce f'(η)=S, and 
f''(η)=S'. This transformation allows the solution to be 
expressed as the following expression: 

 
𝑺′ + 𝟐𝜼𝑺 = 𝟎 (16) 

 
Upon integrating both sides with respect to η, it will yield: 

 
𝑺

𝑪
= 𝒆−𝜼

𝟐
 (17) 

 

𝑺 = 𝒇′(𝜼) = 𝑪𝒆−𝜼
𝟐
 (18) 

 
And integrating it again with respect to η  

 

𝒇(𝜼) = 𝑪𝟏 ∫ 𝒆−𝜼
𝟐𝜼

𝟎
𝒅𝜼 + 𝑪𝟐 (19) 

 
Where initially η = 0 has been chosen as the lower 

limit of the indefinite integral, it acknowledged that this 
integral cannot be evaluated in closed form. Changing the 
lower limit from η = 0 to another value would merely alter 
the constant C2, which remains undetermined. However, 
by applying the specified boundary conditions and 
subsequently evaluating equation 19,  the values of C1 and 
C2 can be determined. 

This equation is to be solved under the following 
initial and boundary conditions relevant to the problem: 
f(0) = 1 and f(∞) = 0. 

 

𝑪𝟐 = 𝟏      and           𝑪𝟏 = −
𝟏

∫ 𝒆−𝜼
𝟐∞

𝟎 𝒅𝜼
 (20) 

 
By substituting the constants, the equation 19 can be 
expressed as follows: 

 

𝒇(𝜼) = 𝟏 −
𝟐

√𝝅
∫ 𝒆−𝜼

𝟐𝜼

𝟎
𝒅𝜼 (21) 

 
Or it can be expressed as error function (Cody, 1993) 
 
𝒖

𝑼𝒐
= 𝟏 − 𝒆𝒓𝒇(

𝒚

𝟐√𝝊𝒕
) (22) 

 
2.2 Simpson’s Rule Integration Method 

To determine the values of velocity, f(η), we perform 
numerical integration of equation 21 using Simpson's 
approximation. The integration, represented in the form 

of ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂
, can be solved using the following formula 

(Cartwright, 2017) 
 

𝑺𝒏 =
𝜟𝒙

𝟑
(𝒚𝟎 + 𝟒𝒚𝟏 + 𝟐𝒚𝟐 + 𝟒𝒚𝟑 + 𝟐𝒚𝟒+. . . +𝟐𝒚𝒏−𝟐 +

𝟒𝒚𝒏−𝟏 + 𝒚𝒏) (23) 

 

Where 𝚫𝒙 = (𝒃 − 𝒂) 𝒏⁄ , and n is an even arbitrary 
number. 

 
 

3. RESULTS AND DICUSSION 
 

In the analysis of the sudden accelerated plate case, 
current research employed the similarity method to 
formulate the problem and then numerically integrated it 
using Simpson's rule. To solve Equation 22 with 
Simpson's rule, as outlined in Equation 24, the calculation 
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set n to 10, resulting in Δx = η⁄10. The assumption is that 
the value of η, representing the maximum limit of the 
integral in Equation 22, ranges from 0 to 2, leading to Δx 
being 0.2. 

 

 
 

Fig. 3. Velocity distribution above a suddenly accelerated plate.   

 
Figure 3 presents the velocity profile, indicating that 

at the plate surface (η = 0), both the flow and the plate 
share the same velocity, while for the flow far away from 
the surface (η = ∞), the velocity reaches zero. This 
observation aligns with the non-slip condition and the 
specified boundary conditions. Specifically, for t > 0, the 
velocity of the flow at the surface (y = 0) equals the plate's 
speed, and at y = ∞, the velocity reduces to zero. 
Therefore, it is evident that Figure 3 and the boundary 
conditions yield consistent velocity profiles. 

Fig. 3 reveals that as the plate initiates its motion, a 
boundary layer forms near its surface due to the no-slip 
condition. This boundary layer is characterized by a 
gradient of fluid velocity, transitioning from the 
stationary surface of the plate to the free stream velocity 
of the fluid (as seen in Fig. 2). Over time, the thickness of 
the boundary layer increases as it adapts to the plate's 
acceleration. The evolution of the flow field is influenced 
by the diffusion of momentum within the fluid, gradually 
establishing a parabolic velocity profile across the 
boundary layer. 

Figure 4 provides a comparison of the velocity profiles 
at different times, with y representing the boundary layer 
thickness (as labeled δ in Figure 2). As time progresses, 
the boundary layer thickness increases. Notably, the 
velocity profiles for different times exhibit a 'similar' 
trait. In other words, they can be scaled to a common 
curve along the ordinate axis. 

Figure 4 illustrates the velocity distribution, and it's 
noteworthy that the velocity profiles at different times 
exhibit a 'similar' characteristic. In essence, these profiles 
can be normalized to a common curve by adjusting the 
scale along the ordinate axis. 

By substituting equation 9 into equation 15, the 
boundary layer thickness is expressed as follow, 
 

𝒚 = 𝟐𝜼√𝝊𝒕 (24) 
 

Assume that the surrounding fluid is air at 
temperature 20oC with atmospheric pressure. The 
properties of the corresponding fluid are available in the 
reference (Fox et al., 2011). 

For time are varied, where t = 1, 5, 10 and 20, the 
velocity distribution is represented in Figure 4. 

 

 
 

Fig. 4. Velocity Profile for Varies Time.   

 
To obtain the shear stress at the wall, 𝝉𝒘, the general 

form was expressed by the following,  
 

𝝉𝒘 = 𝝁
𝝏𝒖

𝝏𝒚
|
𝒚=𝟎

  (25) 

 
We begin with equation 19 and then substitute with 

equation 13. 
  

𝒖(𝒚, 𝒕) = 𝑼𝟎 (𝟏 −
𝟐

√𝝅
∫ 𝒆−𝜼

𝟐
𝜼

𝟎

𝒅𝜼) 

              = 𝑼𝟎 −
𝟐𝑼𝟎

√𝝅
∫ 𝒆−𝜼

𝟐𝜼

𝟎
𝒅𝜼  (26) 

 
The derivative of equation above with respect to y is 

given below, 
 

𝝏𝒖

𝝏𝒚
=

𝟐𝑼𝟎

√𝝅

𝒆−𝜼
𝟐

𝒈(𝒕)
  (27) 

 
Substituting equation above into equation 25 by 

including g(t)=2√υt, gives 
  

𝝉𝒘 = 𝝁
𝟐𝑼𝟎

√𝝅

𝒆−𝜼
𝟐

𝟐√𝝊𝒕
|
𝒚=𝟎

 (28) 

 
Where υ=μ⁄ρ.  
By simplifying the equation, it can be expressed as 
 

𝝉𝒘 = 𝑼𝟎
𝝁

√𝝅𝝊𝒕
      (N⁄m2) (29) 
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Solving the first Stokes’ problem using Laplace 
transform has been done previously in other research 
where the shear stress influenced by several parameters 
including fluid density (Kharchandy, 2018). In 
comparison, shear stress result in equation 29 where the 
effect of viscosity, 𝜇, and density, ρ.    

Examining the shear stress at the wall, as 
demonstrated in Figure 5 for various time instances, 
reveals that at this moment the plate initiates its motion 
(t = 0), the shear stress reaches its maximum value. As 
time advances, the shear stress at the wall gradually 
decreases. 

For time are varied, where t = 1, 5, 10 and 20 and   is 
constant, the shear stress at wall is represented in Figure 
5. 

 

 
 

Fig. 5. Shear stress at the plate wall for varied time.   

 
 
4. CONCLUSION 

 
The current research involves an analysis of the 

sudden accelerated plate case, primarily employing the 
similarity method. The study of the velocity profile within 
this scenario demonstrates its consistency with the non-
slip condition and the specified boundary conditions. 
Specifically, for t > 0, the velocity of the flow at the surface 
(y = 0) aligns with the plate's speed, while at y = ∞, the 
velocity decreases to zero, mirroring the initial condition. 
The findings reveal that at the moment the plate initiates 
its motion (t = 0), the shear stress reaches its maximum 
value. As time progresses, the shear stress at the wall 
gradually decreases. 

Modification of this problem is challenging and 
attracts many researchers’ interests recently. Applying 
other powerful mathematical methods may contribute to 
simplifying the solution.  
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