Rekayasa permukaan material *metal matrix composite* Al/Al₂O₃ melalui *friction stir processing* (FSP)

Bunga Rani Elvira^{1,a}, Dr. Eng. A. Ali Alhamidi, ST., MT¹ dan Muhammad Fitrullah, ST., MT¹

¹ Jurusan Teknik Metalurgi, Fakultas Teknik, UNTIRTA, Cilegon, Indonesia

^a <u>bungaranielvira@gmail.com</u>

Abstrak

Pada penelitian ini, pengembangan metode friction stir processing (FSP) untuk merekayasa permukaan material MMC Al/Al₂O₃ telah dilakukan. Material MMC Al/Al₂O₃ yang berbeda fraksi penguatnya (5;7,5;10 vol.% Al₂O₃) dilakukan pengerjaan FSP sebanyak satu pass. Mikroskop optik dan SEM-EDX digunakan untuk mengidentifikasi mikrostruktur, sedangkan pengujian kekerasan makro dilakukan untuk mengetahui pengerjaan FSP terhadap sifat mekanik material. Hasil penelitian menunjukkan bahwa setelah dilakukan pengerjaan FSP, nilai kekerasan material MMC Al/Al₂O₃ meningkat karena terjadinya penghalusan butir matriks Al dan homogenisasi distribusi partikel Al₂O₃. Nilai kekerasan FSP 1000 rpm.

Kata kunci : rekayasa permukaan, FSP, MMC Al/Al2O3, penghalusan butir, homogenisasi

PENDAHULUAN

Friction stir processing (FSP) adalah proses termo-mekanik yang dapat memodifikasi mikrostruktur pada permukaan material sehingga menghasilkan peningkatan sifat mekanik^[1]. Metode ini pertama kali dikembangkan oleh Mishra, dkk untuk membuat lapisan komposit pada permukaan material^[2,3]. Prinsip dasar pengerjaan FSP sebenarnya sangat sederhana. *Tool* yang berputar dengan kecepatan tertentu digerakkan melintasi permukaan material secara horizontal. Selama proses tersebut, material akan mengalami deformasi plastis yang hebat sehingga dihasilkan butir dengan ukuran yang halus^[2]. Selain itu, selama pengerjaan FSP juga terjadi pemanasan lokal akibat gesekan antara putaran *tool* dengan material^[2,4-6]. Panas yang dihasilkan akan mencapai temperatur yang dapat menyebabkan material terdeformasi plastis secara mudah^[4].

Modifikasi mikrostruktur menggunakan metode FSP dapat dilakukan secara selektif pada daerah yang dibutuhkan. Hal ini dikarenakan perubahan mikrostruktur tidak terjadi pada seluruh permukaan material, melainkan hanya pada daerah yang mengalami pengerjaan FSP (*stirred zone*)^[7,8]. Metode FSP memiliki kelebihan dibandingkan dengan metode rekayasa permukaan lainnya, seperti kondisi pengerjaan yang relatif sederhana, mudah untuk dikontrol, biaya operasional yang rendah dan tidak membutuhkan energi yang besar^[1,9]. Selain itu, metode ini dilakukan pada kondisi padat (*solid state*) sehingga menghindari terjadinya reaksi antara partikel penguat dengan matriks logam yang dapat menyebabkan pembentukan fasa yang tidak diinginkan^[4,9,10].

Pengembangan metode FSP untuk meningkatkan sifat mekanik dari material komposit, khususnya komposit bermatriks logam yang diperkuat dengan partikel keramik seperti material MMC Al/Al₂O₃, mulai banyak dilakukan. Pada umumnya, partikel penguat Al₂O₃ ditemukan terdistribusi secara tidak merata pada material MMC Al/Al₂O₃ hasil fabrikasi. Hal ini dikarenakan partikel Al₂O₃ memiliki sifat mampu basah (*wettability*) yang rendah sehingga cenderung untuk teraglomerasi dan membentuk *cluster*^[11]. Ketidak-homogenan distribusi partikel Al₂O₃ dapat berdampak pada penurunan sifat mekanik material. Kondisi ini dapat diatasi dengan melakukan pengerjaan FSP pada material MMC Al/Al₂O₃ setelah difabrikasi. Pengerjaan FSP akan mendistribusikan partikel Al₂O₃ secara lebih merata^[2-10]. Selain itu, penghalusan butir yang terjadi selama pengerjaan FSP juga akan menyebabkan penguatan pada material^[4-7,9,13].

Pada penelitian ini, pengaruh pengerjaan FSP terhadap sifat mekanik material MMC Al/Al₂O₃, khususnya kekerasan, telah dikaji secara detail. Hasil identifikasi karakteristik mikrostruktur dan distribusi partikel Al₂O₃

dihubungkan dengan nilai kekerasan material yang dihasilkan setelah pengerjaan FSP. Selain itu, penelitian ini juga mengevaluasi pengaruh fraksi volume partikel Al₂O₃ terhadap nilai kekerasan material MMC Al/Al₂O₃.

METODE PENELITIAN

Penelitian dilakukan dalam skala laboratorium dengan menggunakan tiga buah sampel MMC Al/Al₂O₃ yang berbeda fraksi volume partikel penguatnya, yaitu 5%, 7,5% dan 10%. Mesin *milling* CNC (NVX5060, Mori Seiki, Jepang) digunakan untuk melakukan pengerjaan FSP dengan kecepatan lintasan *tool* sebesar 20 mm/min dan kecepatan rotasi *tool* sebesar 1000 rpm. *Tool* yang digunakan berbahan dasar *tungsten carbide* dan berbentuk silinder (d = 6 mm). Mikroskop optik (BX51M, Olympus) dan SEM-EDX (JSM-6510LA, JEOL) digunakan untuk mengidentifikasi karakteristik mikrostruktur yang terbentuk. Sementara itu, untuk mengetahui pengaruh pengerjaan FSP terhadap kemampuan material maka dilakukan pengujian sifat mekanik yang terfokus pada uji kekerasan makro dengan metode *brinell* (Dia Testor 2 Rc, Wolpert, German).

HASIL DAN PEMBAHASAN

Evolusi mikrostruktur terjadi pada daerah yang mengalami pengerjaan FSP (*stirred zone*). Analisa kualitatif dan kuantitatif yang dilakukan menunjukkan bahwa telah terjadi homogenisasi distribusi partikel Al_2O_3 dan penghalusan butir matriks Al yang berdampak pada peningkatan nilai kekerasan material MMC Al/Al₂O₃^[1-15].

1. Distribusi Partikel Penguat Al₂O₃

Analisa SEM-EDX menunjukkan bahwa daerah yang berwarna hitam pada fotomikro di Gambar 1 merupakan partikel Al_2O_3 , sedangkan daerah yang berwarna putih merupakan presipitat β -AlFeSi yang terdispersi di dalam matriks Al. Daerah berwarna hitam yang berukuran lebih besar (sekitar 3-5 µm) dapat dinyatakan sebagai partikel Al_2O_3 yang teraglomerasi karena memiliki ukuran partikel yang lebih besar dari ukuran satu buah partikel Al_2O_3 ($\pm 1 \mu m$). Penggumpalan atau aglomerasi partikel Al_2O_3 terjadi karena proses pembasahan yang tidak sempurna selama fabrikasi^[11]. Keberadaan partikel Al_2O_3 yang teraglomerasi dapat menurunkan sifat mekanik material.

Gambar 1. Hasil fotomikro kondisi awal material MMC Al-7,5 vol.% Al₂O₃ menggunakan SEM-EDX

Setelah dilakukan pengerjaan FSP, distribusi partikel Al₂O₃ menjadi lebih merata jika dibandingkan dengan kondisi awal (*as-received*). Hasil yang sama diperoleh pada semua material MMC Al/Al₂O₃ yang dianalisa. Perputaran *tool* dengan kecepatan rotasi yang tinggi menyebabkan terjadinya proses pengadukan yang hebat pada daerah yang mengalami pengerjaan FSP (*stirred zone*). Proses pengadukan ini yang secara tidak langsung akan mendistribusikan partikel Al₂O₃ ke dalam matriks Al secara merata^[4,6]. Fotomikro pada Gambar 2 (a) dan (b) memperlihatkan secara jelas perbandingan distribusi partikel Al₂O₃ sebelum dan setelah dilakukan pengerjaan FSP.

Gambar 2. Hasil fotomikro material MMC Al-7,5 vol.% Al₂O₃ menggunakan mikroskop optik pada kondisi (a) *as-received* dan (b) setelah pengerjaan FSP

Selain dapat mendistribusikan partikel Al_2O_3 , pengerjaan FSP juga berhasil memisahkan partikel Al_2O_3 yang teraglomerasi^[4,5]. Perputaran *tool* memungkinkan terjadinya tumbukan diantara partikel Al_2O_3 sehingga menyebabkan pemecahan pada partikel tersebut^[5,12]. Kondisi ini dapat diidentifikasi dari berkurangnya jumlah partikel Al_2O_3 yang teraglomerasi.

2. Penghalusan Butir Matriks Al

Identifikasi mikrostruktur pada material MMC Al/Al₂O₃ yang telah mengalami pengerjaan FSP menunjukkan terjadinya pengecilan ukuran butir matriks Al, seperti yang dapat dilihat pada Gambar 3. Kondisi ini menandakan bahwa telah terjadi peristiwa penghalusan butir yang kemungkinan dihasilkan dari proses *dynamic recrystallization* selama pengerjaan FSP^[4,7,10,13]. Gesekan antara *tool* dengan benda kerja akan menghasilkan energi yang dapat digunakan untuk mencapai temperatur *dynamic recrystallization*^[1,7].

Gambar 3. Hasil fotomikro menggunakan mikroskop optik yang menunjukkan ukuran butir material MMC Al-5 vol.% Al₂O₃ pada kondisi (a) *as-received* (b) setelah pengerjaan FSP

Berdasarkan data kuantitatif ukuran butir matriks Al pada Tabel 1 dapat diketahui bahwa peningkatan fraksi volume partikel Al_2O_3 berdampak pada penurunan ukuran butir matriks Al yang terbentuk. Semakin besar fraksi volume partikel Al_2O_3 maka semakin banyak jumlah partikel Al_2O_3 yang dapat memberikan *pinning effect* terhadap pertumbuhan butir matriks Al sehingga ukuran butir yang dihasilkan akan semakin kecil^[4,8,14].

No.	Fraksi Volume Al ₂ O ₃ (vol.%)	Ukuran Butir Matriks Al (µm)		Nilai Kekerasan (HBN) indentor 2,5 mm; F = 62,5 kgf	
		Sebelum FSP	Setelah FSP	Sebelum FSP	Setelah FSP
1.	5	153,87	90,86	51,00	67,63
2.	7,5	128,74	46,42	54,47	73,23
3.	10	90,44	40,72	63,62	74,27

Tabel 1. Ukuran butir dan nilai kekerasan material MMC Al/Al ₂ O ₃ sebelum dan setelah penge	rjaan FS	SP
--	----------	----

Jika seluruh partikel Al_2O_3 yang terdapat pada material MMC Al/Al_2O_3 terpisah dan terdistribusi secara sempurna di dalam matriks maka secara teoritis ukuran butir matriks Al dapat dihitung dengan menggunakan persamaan Zener Limiting Grain Size^[4], yaitu:

$$d_z = \frac{4r}{3V_f} \tag{1}$$

r adalah jari-jari partikel penguat (pada penelitian ini $r = 0,5 \,\mu$ m) dan V_f adalah fraksi volume partikel penguat. Perbandingan ukuran butir teoritis dengan hasil eksperimen dapat dilihat pada Gambar 4. Ketidak-sesuaian ukuran butir matriks Al dikarenakan proses aglomerasi partikel Al₂O₃ yang sulit dihindari sehingga tidak semua partikel Al₂O₃ dapat membatasi perpindahan batas butir^[4].

Gambar 4. Grafik perbandingan ukuran butir teoritis dengan hasil eksperimen

3. Kekerasan Material MMC Al/Al₂O₃

Homogenisasi distribusi partikel Al_2O_3 dan penghalusan butir matriks Al setelah pengerjaan FSP menyebabkan peningkatan nilai kekerasan material^[1-15]. Pada penelitian ini, nilai kekerasan maksimum, yaitu sebesar 74,27 HBN, dihasilkan pada material MMC Al-10 vol.% Al_2O_3 . Namun persentase peningkatan nilai kekerasan material MMC Al-5 vol.% Al_2O_3 dan MMC Al-7,5 vol.% Al_2O_3 . Persentase peningkatan nilai kekerasan paling tinggi, yaitu sebesar 34,44%, terjadi pada material MMC Al-7,5 vol.% Al_2O_3 . Kondisi ini mungkin dikarenakan pada material MMC Al-10 vol.% Al_2O_3 , distribusi partikel Al_2O_3 belum seluruhnya merata sehingga tidak semua partikel Al_2O_3 dapat menghambat pertumbuhan butir matriks Al ketika terjadi *dynamic recrystallization*.

Gambar 5. Grafik hubungan ukuran butir matriks Al terhadap nilai kekerasan material

Pengaruh fraksi volume partikel Al_2O_3 terhadap nilai kekerasan material dapat dilihat secara jelas dari grafik pada Gambar 5. Peningkatan fraksi volume Al_2O_3 menyebabkan peningkatan nilai kekerasan MMC Al/Al_2O_3 . Ukuran butir yang lebih kecil dan jumlah partikel Al_2O_3 yang lebih banyak menyebabkan material dengan fraksi volume Al_2O_3 yang lebih besar akan memiliki nilai kekerasan yang lebih tinggi.

Berdasarkan karakteristik mikrostruktur, mekanisme penguatan yang mempengaruhi peningkatan nilai kekerasan material MMC Al/Al₂O₃ setelah pengerjaan FSP adalah *Orowan strengthening* dan *fine-grain hardening*^[4]. Mekanisme *Orowan strengthening* terjadi karena adanya dispersi partikel penguat Al₂O₃ di dalam matriks Al^[4,15]. Ketika terjadi deformasi plastis, dislokasi akan bergerak disepanjang bidang slip. Keberadaan partikel Al₂O₃ menyebabkan dislokasi akan melewati partikel tersebut dengan cara melengkung (*bow out*) pada ruang diantara partikel Al₂O₃ dan membentuk *Orowan loops* disekeliling partikel tersebut. Pembentukan *Orowan loops* membuat pergerakan dislokasi menjadi sulit. Kondisi ini menghasilkan peningkatan kekuatan pada material^[15]. Sementara itu, mekanisme penguatan *fine-grain hardening* terjadi karena adanya penghalusan butir pada material^[4]. Material dengan ukuran butir yang kecil memiliki kemampuan menahan pergerakan dislokasi yang lebih baik daripada material dengan ukuran butir yang dapat menjadi penghalang (*obstacle*) bagi pergerakan dislokasi. Persamaan *Hall Petch* dapat digunakan untuk menunjukkan hubungan antara ukuran butir dengan nilai kekerasan sesuai dengan persamaan *Hall Petch*.

KESIMPULAN

Berdasarkan data kualitatif dan kuantitatif yang diperoleh selama penelitian maka dapat disimpulkan beberapa hal, yaitu:

- 1. Distribusi partikel Al₂O₃ di dalam matriks Al menjadi lebih merata setelah dilakukan pengerjaan FSP.
- 2. Pengerjaan FSP menyebabkan penghalusan butir matriks Al yang kemungkinan dihasilkan dari proses *dynamic recrystallization*. Pada penelitian ini, metode FSP dapat menghaluskan butir matriks Al sampai 64% dari ukuran butir awal.
- 3. Peningkatan fraksi volume Al₂O₃ berdampak pada penurunan ukuran butir matriks Al.
- Keseragaman distribusi partikel Al₂O₃ dan penghalusan butir matriks Al menyebabkan peningkatan nilai kekerasan material. Peningkatan nilai kekerasan paling tinggi, yaitu sebesar 34,44%, terjadi pada material MMC Al-7,5 vol.% Al₂O₃.

REFERENSI

- [1] Itharaju RR. Friction stir processing of aluminum alloys. University of Kentucky; 2004.
- [2] Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A. 2003:341:307-10.
- [3] Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005:50:1-78.
- [4] Zarghani AS, Bozorg SFK, Hanzaki AZ. Microstructures and mechanical properties of Al/Al₂O₃ surface nano-composite layer produced by friction stir processing. Mater Sci Eng A. 2009 Jan:500:84-91.
- [5] Hodder KJ, Izadi H, McDonal AG, Gerlich AP. Fabrication of aluminum–alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing. Mater Sci Eng A. 2012:556:114-21.
- [6] Gan YX, Solomon D, Reinbolt M. Friction stir processing of particle reinforced composite materials. Mater. 2010 Jan:3:329-50.
- [7] Sun N, Apelian D. Microstructural modification of A206 aluminum via friction stir processing. Mater Sci Forum. 2009:618-619:361-64.
- [8] Ma YZ, Pilchak AL, Juhas MC, Williams JC. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Sripta Mater. 2008:58:361-66.
- [9] Thangarasu A, Murugan N, Dinaharan I, Vijay SJ. Microstructure and microhardness of AA1050/TiC surface composite fabricated using friction stir processing. Sadhana. 2012 Oct:Suppl Pt 5:37:579-86.

- [10] Yang M, Xu C, Wu C, Lin K, Chao YJ, An L. Fabrication of AA6061/Al₂O₃ nano ceramic particle reinforced composite coating by using friction stir processing. J Mater Sci. 2010:45:4431-38.
- [11] V Bharath, Nagaral M, Auradi Nagaral. Preparation, characterization and mechanical properties of Al₂O₃ reinforced 6061Al particulate MMC's. Int J Eng Res. 2012:1(6):[6 p.].
- [12] Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium. Acta Mater. 2002:50:39-51.
- [13] El-Danaf EA, El-Rayes MM, Soliman MS. Friction stir processing: an effective technique to refine grain structure and enhance ductility. Mater Design. 2010;31:1231-36.
- [14] Ma ZY, Mishra RS, Mahoney MW. Superplasticity in cast A356 induced via friction stir processing. Sripta Mater. 2004:50:931-35.
- [15] Queyreau S, Monnet G, Devincre B. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 2010 Aug:58:5586-95.
- [16] Alhamidi A, Edalati K, Horita Z, Hirosawa S, Matsuda K, Terada D. Softening by severe plastic deformation and hardening by annealing of aluminum-zinc alloy: significance of elemental and spinodal decompositions. Mater Sci Eng A. 2014 May:610:17-27.
- [17] ASTM. Standard test method for brinell hardness of metallic materials. ASTM E10-12. United State; 2012.
- [18] ASTM. Standard test methods for determining average grain size. ASTM E112-10. United State; 2012.