Risk Management Analysis of Building Construction Project in the Jakarta City

Ahmad Waris Maulana¹, Budi Santosa²

^{1,2}Faculty of Civil Engineering and Planning, Gunadarma University Email : <u>warisright@gmail.com</u>

ABSTRAK

Proyek pembangunan gedung adalah salah satu proyek yang memiliki risiko yang sangat tinggi dalam pelaksanaannya berdasarkan beban pekerjaan dan juga ketinggian struktur bangunannya. Pelaksanaan proyek ini membutuhkan waktu yang lama dengan tingkat komplektisitas yang tinggi sehingga menimbulkan ketidakpastian dilapangan serta mengakibatkan munculnya berbagai macam risiko pada pelaksanaannya. Manajemen risiko harus diterapkan pada tahap awal untuk pengembangan proyek, manajemen risiko akan sangat berguna dalam mengembangkan pemahaman tentang ketidakpastian proyek. Sangat penting untuk memahami konsep manajemen risiko sebelum memahami risiko dalam industri konstruksi bangunan. Penelitian ini bertujuan untuk memperoleh faktorfaktor risiko dominan yang paling berpengaruh dalam proyek konstruksi bangunan dengan menggunakan Metode Relative Important Index (RII). Metode RII digunakan untuk melihat faktor risiko terbesar. Data primer penelitian diperoleh dengan mengisi kuesioner faktor risiko oleh 32 responden dengan posisi Konsultan, Kepala Ahli, Manajer Proyek, dan Manajer Lokasi. Hasil penelitian menunjukkan bahwa Peristiwa yang termasuk dalam kategori risiko tinggi adalah sebagai berikut; kurangnya gambar detail, perubahan desain, desain dan gambar tidak sesuai dengan bill of quantity, jumlah tenaga kerja yang berubahubah, kurangnya ketersediaan pekerja di lapangan, kurangnya kontrol dan koordinasi di lapangan, penambahan lingkup pekerjaan, ketidakakuratan dan ketidakcocokan spesifikasi detail pada desain, kurangnya keahlian pekerja dan kurangnya staf yang memenuhi syarat, kesalahan dalam memperkirakan biaya dan waktu pelaksanaan.

Kata kunci: Manajemen Risiko, Gedung, Identifikasi Risiko, Dampak, Respon Risiko

ABSTRACT

The project of building construction is one of the projects which has a high risk in its implementation based on the workload and also the height of the building structure. Implementation of this project requires a long time with a high level of complexity that causes uncertainty in the field and results in various kinds of risks in its implementation. Risk management should apply at the initial phase for project development, risk management will be very useful in developing an understanding of project uncertainty. It is highly substantial to understand the risk management concept before understanding the risks in industry of building construction. This study aims to obtain the dominant most influential risk factors in a project of building construction by applying Relative Important Index (RII) Method. The RII method is used to look at the greatest risk factors. Primary data of the research were obtained by filling the risk factor questionnaire by 32 respondents with the positions of Consultans, Chief Expert, Project Manager, and Site Manager. The results showed that The events included in the high risk category are as follows; lack of detailed drawings, a change in design, the designs and drawings do not comply with the bill of quantity, the amount of labor is changing, lack of availability of workers, lack of control and coordination in the field, additional scope of work, inaccuracy and mismatch of detailed

specifications on the design, lack of worker expertise and lack of qualified staff, error estimating costs and implementation time.

Keywords: Risk Management, Building, Risk Identification, Impact, Risk Response

1. Introduction

The project of building construction is one of the projects which has a high risk in its implementation based on the weight of the work and also the height of the building. Implementation of this project requires a long time with a high level of complexity that causes uncertainty in the field and results in farraginous kinds of risks in its enforcement. Compared to other sectors, construction projects are in the top position in the annual failure rate and outcoming liabilities^[1]. Forese stated that the sector is delineated by having many participants of multiple disciplines who are involved together at heterogeneous stages throughout a single project. This characteristic adds more intricacy to the whole construction process which is a collection of timeconsuming ventures^[2]. Risk is elucidated as the multiplication of a loss / gain or the probability of a loss / gain and its several magnitude. The occasion is said to be totally uncertain if the probability of the occasion is 0% or very certain if the probability of the occasion is 100%. Between these two extreme probabilities, the uncertainty varies rather greatly. At present, risks can be evaluated taking various kinds of information^[3].

Planning of risk management is the procedure of determining how to meet and organize the risk events for respective projects. Risk management should apply at the initial phase for project development; Risk management will be very useful in developing an understanding of project uncertainty. It is highly crutial to conceive the risk management concept before comprehending the risks in building construction project. In every phase of the projects there are many dimensions of the risks and uncertainties. The project major objectives are most often concerned to cost, time, function and quality as well as client contentment. Risk can be explained in various ways relying on the risk management focus, different relations between the objectives and the research scope^[4]. The following should be considered: the risk importance, their actual management techniques, the existing status of risk management systems in the organisations, and barriers to effective management of risk from major stakeholders perspective. The research shows that economic and financial factor, followed by quality, are the most essential risks, and the industry commonly tries to elude or switchover these risks^[5].

This study shows overall ranking of the risk factors occurs in the building construction field and response was given by the consultans, chief experts, project manager and site manager respectively. After discussion of rankings the recommendations for stakeholders has been discussed and future scope has been made.

2. Literature Review

Risk management in a project contains the management of risk, identification, analysis, planning of response, implementation of response, and project risk monitoring. Upgrading the likelihood and/or impact of positive risks and to downgrading the likelihood and/or impact of negative risks is the aims of the risk management in a project, with an eye to optimize the project success occasions^[6].

2.1 Risk Management Planning

This process is elucidating how to conduct risk management activities for a project. The main advantage of this process is that it ascertains that the type, degree, and visibility of risk management are comparable to both risks and the project importance to the organization and other stakeholders. This process is undertaked once in the project^[7].

2.2 Identify of Risk

This process is to identify risks to the project as well as their sources, and document the characteristics of all project risks. The existing individual project risks documentations and overall project risk sources are the main advantage of this process. It also unifies together information. However, the project stakeholder can counter befittingly to recognized risks^[8].

2.3 Analysis of Qualitative Risk

This process is selecting the risks of each project for further analysis and action by evaluating the likelihood of the risk occurring and its impacts as well as other characteristics. The major benefit of this process is it allows the team to focus more on risk with high priority^[9].

2.4 Analysis of Quantitative Risk

This process is to numerically analyze the impact of a combination of risk factors and also the severity of the overall project objectives. The main benefit of this process is that it measures the impact of the overall project risk, and can also provide additional quantitative risk information to support planning to respond to the risk^[10].

2.5 Plan Risk Responses

This process is to develop options, pick strategies, and approve on actions to meet overall project risk exposure, as well as to manage individual project risks. The major advantage of this process is that it acquaints convenient ways to tackle overall project risk and individual project risks. This process also gives resources and incorporates activities into project documents and plan of project management as demanded. This process is organized throughout the project^[11].

2.6 Risk Response Implementation

Risk response implementation is the process of implementing an agreed project risk response

plan. The main advantage of this process is it confirms that agreed-upon risk responses are implemented as planned in order to meet overall project risk exposure, reduce individual project impendences, and maximize individual project chances^[12].

2.7 Risk Monitoring

The risk monitoring process is one of the most important processes, this is the process of monitoring the implementation of agreed risk response plans, tracking identified-risks, admiting and elaborating new risks, and evaluating how effective the risk monitoring process is throughout the project. The main benefit of this process is as a basis for decision making on a project based on actual information about overall project risk exposure and individual project risk^[13].

3. Research Methodology

Research methodology is a scientific process that is commonly used in research or ways to gain data which will be taked for the purpose of the research. In methodology, it attempts to discover the questions given in systematic ways that are used and attempt to find out all the answers until it can draw conclusions^[14].

3.1 Questionaire Design

This study inclusived search of literature and interviews. Literature review can be obtained through journals, books, proceedings, and websites. Based on the literature review that has been conducted, in this study obtained 50 dominant risk factors for building construction projects in Jakarta. Furthermore, these factors are categorized into seven groups such as: force major, logistics, manpower, contractual, design, implementation, and management. Content validity was conducted by five experts to evaluate the questionnaire-content validity. to examine readability, to verify whether these factors are in line with current conditions, and experts are also enabled to provide their opinions if needed.

3.2 Data Analysis Method

Questionnaire survey among owners, contractors, and consultans will be analysed applying Relative Importance Index (RII).

3.3 Measurement Scale

The measurement scale applyed in this research uses an ordinal scale. Ordinal scale is a standard scale used in research to distinguish data, as well as containing elements of ranking (degree), degree (degree) or level (level) through certain assessments. Assessments made can contain elements of objectivity or subjectivity or a combination of both.

 Table 1. Ordinal Scale Used for Measuring of the level of Effect^[14]

Scale	Item	
1	No Effect	
2	Low Effect	
3	Medium	
4	High Effect	
5	Critical Effect	
Source	e : Sugiyono, 2012	

For analysing data by ordinal scale, each factor used Relative Importance Index (RII) by the following equation:

$$\operatorname{RII} = \frac{5n1 + 4n2 + 3n3 + 2n2 + n1}{5(n1 + n2 + n3 + n4 + n5)} \tag{1}$$

Where,

- n1 = respondent's number who answered "Critical effect"
- n2 = respondent's number who answered "High effect"
- n3 = respondent's number who answered "Medium effect"
- n4 = respondent's number who answered "Low effect"
- n5 = respondent's number who answered "No effect"

3.4 Coefficient of Spearman's Rank Correlation

A correlation is simply defined as a relationship between two variables. In order to test the relative agreement/disagreement between the responses from different groups consultans, chief expers, project managers, site managers the ranks, derived from the ratings given by respondents corresponding to the risk

factors predisposing in building construction project, are to be analysed using the Coefficient of Spearman's rank correlation.

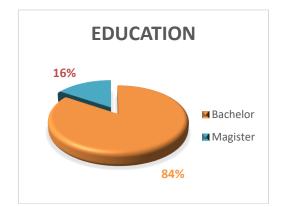
$$R = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$
(2)

Where,

d = difference between ranks

n = number of parameter being ranked

4. Data Analysis And Results


4.1 Stakeholder Details

Total 35 questionnaires were distributed to different respondents in Jakarta. Total 32 respondents provided their response for this research work. Table 3 shows the number of respondents.

 Table 2. Respondent Profile

No	Respondent	Total
1	Position	
	Consultant	3 People
	Chief Expert	5 People
	Project Manager	19 People
	Site Manager	5 People
2	Education	
	Bachelor	27 People
	Magister	5 People
3	Experience	
	5 – 15 Years	13 People
	Upper 15 Years	19 People
		2010

Source: the Survey Results, 2018

Gambar 1. Pie Diagrams for the Education Category Source: the Calculation Results, 2018

Gambar 2. Pie Diagrams for the Posistion Category Source: the Calculation Results, 2018

Gambar 3. Pie Diagrams for the Experience Category Source: the Calculation Results, 2018 4.1 Data Analysis by Relative Important Index (RII) Method

The primary data accumulated from the questionnaire survey were analysed utilizing method of Relative Importance Index for ranking each factor from the perspective of consultans, chief expers, project managers, site managers. Table 3 shows the ranking of overall response by RII method for risk factors.

Table 3. Variable of Re

No	Code	Variabel	
		Force Majure	
1	A1	Bad weather at the time of implementation	
5	A2	The wind is too strong at the project site	
6	A3	Earthquake	
		Logistics	
7	B1	Procurement of materials and equipment is unschedule	
8	B2	Equipment damage occurred during implementation	
9	B3	Late material order	
10	B4	Late delivery of material from the supplier	
11	B5	The volume of material sent is not suitable	
12	B6	Insufficient material availability	
14	B8	Increase in material prices	
15	B9	Damage or loss (theft) of material	
16	B10	Lack of equipment needed	
17	B11	Equipment that is not according to need	
18	B12	Storage of material in Logistics that is not recorded properly	
		Manpower	
19	C1	The amount of labor is changing	
20	C2	Lack of availability of workers	
21	C3	Lack of worker expertise and lack of qualified staff	

22	C4	An accident occurred due to low security procedures	
23	C5	Lack of application of security and safety at work (K3)	
24	C6	Low labor productivity	
		Contractual	
25	D1	Incomplete documents	
26	D2	Non-current project funding	
27	D3	Termination of work unilaterally by the owner	
28	D4	Disputes between owners and contractors	
		Implementation	
29	E1	Congestion around the project site	
30	E2	Access to difficult locations	
31	E3	The construction method used is not appropriate	
32	E4	Damage that occurred in the surrounding area at the time of erection	
33	E5	Security disturbances at the project site	
34	E6	Incorrect steel fabrication and assembly	
35	E7	Quality of material that is not according to specifications	
36	E8	Changes in work schedule	
37	E9	The arrival of an undesirable NGO	
38	E10	Additional scope of work	
		Design	
39	F1	Design preparation and approval are late	
40	F2	Design error	
41	F3	The survey conducted at the time of design is not accurate	
42	F4	A change in design	
43	F5	Incorrect method of implementation	

44	F6	Incomplete data
45	F7	The designs and drawings do not comply with the Bill of Quantity
46	F8	Inaccuracy and mismatch of detailed specifications on the design
47	F9	Lack of detailed drawings
		Management
48	G1	Error estimating costs and implementation time
49	G2	Lack of control and coordination in the field
50	G3	The material procurement process has stopped and has not been rescheduled
51	G4	Poor coordination between stakeholders
52	G5	Delay licensing before implementation
53	G6	Implementation schedule that is not well planned
54	G7	Administration that is not neatly recorded
	Sou	rce: Study Literature, 2018

Table 4. Ranking of Overall Response by RII Method for Risk Factors

No	Kode	RII	Rank
1	A1	0.278	50
2	A2	0.363	45
3	A3	0.480	28
4	B1	0.492	25
5	B2	0.490	26
6	B3	0.447	33
7	B4	0.481	27
8	B5	0.371	43
9	B6	0.408	40
10	B8	0.631	15
11	B9	0.436	36

	D 10		
12	B10	0.379	41
13	B11	0.361	46
14	B12	0.329	49
15	C1	0.767	4
16	C2	0.766	5
17	C3	0.742	9
18	C4	0.453	32
19	C5	0.455	31
20	C6	0.526	20
21	D1	0.426	38
22	D2	0.611	16
23	D3	0.682	23
24	D4	0.587	17
25	E1	0.500	23
26	E2	0.337	48
27	E3	0.440	34
28	E4	0.419	39
29	E5	0.361	47
30	E6	0.365	44
31	E7	0.471	29
32	E8	0.637	14
33	E9	0.437	35
34	E10	0.744	7
35	F1	0.556	19
36	F2	0.662	12
37	F3	0.515	22
38	F4	0.804	2
39	F5	0.561	18
40	F6	0.653	13
41	F7	0.769	3
42	F8	0.744	8
43	F9	0.812	1
44	G1	0.689	10
45	G2	0.745	6
46	G3	0.433	37
47	G4	0.456	30

48	G5	0.526	21
49	G6	0.498	24
50	G7	0.379	42
	C	ha Calaulation Dogulta	2010

Source: the Calculation Results, 2018

The top ten factors of risk affecting in building construction projects with their level of effect as rated by considering all responses are listed below:

- 1. Lack of detailed drawings with a value of RII = 0.812
- 2. A change in design with a value of RII = 0.804
- 3. The designs and drawings do not comply with the bill of quantity with a value of RII = 0.769
- 4. The amount of labor is changing with a value of RII = 0.767
- 5. Lack of availability of workers with a value of RII = 0.766
- 6. Lack of control and coordination in the field with a value of RII = 0.745
- 7. Additional scope of work with a value of RII = 0.744
- 8. Inaccuracy and mismatch of detailed specifications on the design with a value of RII = 0.744
- 9. Lack of worker expertise and lack of qualified staff with a value of RII = 0.742
- 10. Error estimating costs and implementation time with a value of RII = 0.689

4.2 Coefficient of Spearman's Rank Correlation

The spearman's correlation coefficient was used to find out the correlation between the rankings given by consultans, chief expers, project managers, site managers. These correlation coefficient values show the amount of correlation between these stakeholders for ranking the risk factors affecting in building construction projects using RII method. Table 5 shows the spearman's correlation coefficient between stakeholders.

Groups		Spearman's Correlation
Consultan	Chief	0.818
	Expert	
Consultan	Project	0.891
	Manager	
Consultan	Site	0.612
	Manager	
Chief	Project	0.745
Expert	Manager	
Chief	Site	0.612
Expert	Manager	
Project	Site	0.612
Manager	Manager	

Table 5. Spearman's Correlation Coefficient between Stakeholders

Source: the Calculation Results, 2018

5. Conclusions

This study is purposed to identify the risk factors predisposing in building construction projects. This research investigates all possible risk factors affecting in building construction projects through a structured questionnaire distributed in Jakarta. The survey outcomes are subjected to analysis, and the RII method is used to rank risk factors.

The events included in the high risk category are as follows; lack of detailed drawings, a change in design, the designs and drawings do not comply with the bill of quantity, the amount of labor is changing, lack of availability of workers, lack of control and coordination in the field, additional scope of work, inaccuracy and mismatch of detailed specifications on the design, lack of worker expertise and lack of qualified staff, error estimating costs and implementation time.

6. References

"the [1] Chapman, R.J. Controlling Influences on Effective Risk Identification and Assessment for Construction Design Management", International Journal of Project Management, vol. 19, p. 148, April 2001.

- Froese, A.; Rankin, J.; Yu, K. "Project [2] Management Application Models and Assisted Computer Construction Planning in Total Project Systems", International Journal of Construction Information, vol. 5, no. 1, p. 40, 1997.
- [3] Bon-Gang, H.; Xianbo, Z.; Ping, T. L. "Risk Management in Small Construction Projects in Singapore: Status. **Barriers** And Impact", International Journal Project of Management, vol. 32, no. 1, p. 117, 2014.
- Chandubhai, G. S., Pitroda, J. R., [4] Makwana, A. H. "Risk Management in High Rise Construction Projects in Surat City", International Journal of Technical Innovation in Modern Engineering & Science. vol. 5, p. 5, May 2019.
- [5] Iqbal, K.; Choudhry, R.; Holchemacher, K. "Risk Management in Construction Project", Journal of Technological and Economic Development of Economy, vol. 21, no. 1, p. 66, Nov. 2014.
- [6] A Guide to Project Management Body of Knowladge PMBOK 6th Edition, 2017 Page 395. Pennsylvania: Project Management Institute, Inc.
- [7] A Guide to Project Management Body of Knowladge PMBOK 6th Edition, 2017 Page 401. Pennsylvania: Project Management Institute, Inc.
- [8] A Guide to Project Management Body of Knowladge PMBOK 6th Edition, 2017 Page 409. Pennsylvania: Project Management Institute, Inc.
- [9] A Guide to Project Management Body of Knowladge PMBOK 6th Edition, 2017 Page 419. Pennsylvania: Project Management Institute, Inc.
- [10] A Guide to Project Management Body of Knowladge PMBOK 6th Edition, 2017 Page 428. Pennsylvania: Project Management Institute, Inc.
- [11] A Guide to Project Management Body of Knowladge PMBOK 6th Edition, 2017 Page 437. Pennsylvania: Project Management Institute, Inc.

- [12] A Guide to Project Management Body of Knowladge PMBOK 6th Edition, 2017 Page 449. Pennsylvania: Project Management Institute, Inc.
- [13] A Guide to Project Management Body

of Knowladge PMBOK 6th Edition, 2017 Page 453. Pennsylvania: Project Management Institute, Inc.

[14] Sugiyono, *Memahami Penelitian Kualitatif.* Bandung: ALFABETA, 2012