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Abstract 

 
Chitosan, a biopolymer derived from chitin-rich biomass such as crustacean shells, has garnered attention for its 
biodegradability, biocompatibility, and wide-ranging applications. However, conventional chemical extraction 
methods relying on strong acids and bases pose significant environmental and safety concerns, often leading to 
molecular degradation and low product quality. This study explores the use of deep eutectic solvents (DESs) as a 
green alternative for chitosan extraction. DESs, formed from combinations of hydrogen bond donors and 
acceptors, offer tunable properties, lower toxicity, and recyclability. The article highlights the structural 
advantages, extraction efficiency, and environmental benefits of DESs over conventional methods. It also examines 
the integration of process intensification technologies, such as microwave and ultrasound-assisted extraction, to 
enhance yield and reduce energy consumption. The findings underscore DESs’ potential to produce high-purity 
chitosan while supporting sustainability goals and industrial scalability, offering a viable pathway toward eco-
friendly biopolymer processing. 
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Abstrak 
 

Kitosan, biopolimer yang berasal dari biomassa kaya kitin seperti cangkang krustasea, telah menarik perhatian 
karena biodegradabilitas, biokompatibilitas, dan aplikasinya yang luas. Namun, metode ekstraksi kimia konvensional 
yang mengandalkan asam dan basa kuat menimbulkan masalah lingkungan dan keamanan yang signifikan, 
seringkali menyebabkan degradasi molekuler dan kualitas produk yang rendah. Penelitian ini mengeksplorasi 
penggunaan pelarut eutektik dalam (DESs) sebagai alternatif hijau untuk ekstraksi kitosan. DESs, yang terbentuk 
dari kombinasi donor dan akseptor ikatan hidrogen, menawarkan sifat yang dapat diatur, toksisitas yang lebih 
rendah, dan dapat didaur ulang. Artikel ini menyoroti keunggulan struktural, efisiensi ekstraksi, dan manfaat 
lingkungan DES dibandingkan metode konvensional. Artikel ini juga mengkaji integrasi teknologi intensifikasi proses, 
seperti gelombang mikro dan ekstraksi berbantukan ultrasonik, untuk meningkatkan hasil dan mengurangi 
konsumsi energi. Temuan ini menggarisbawahi potensi DES untuk menghasilkan kitosan dengan kemurnian tinggi 
sambil mendukung tujuan keberlanjutan dan skalabilitas industri, menawarkan jalur yang layak menuju pemrosesan 
biopolimer ramah lingkungan. 
 
Kata kunci: Biopolimer; Ekstraksi hijau; Kitosan; Pelarut eutektik dalam; Pemrosesan berkelanjutan  
 
 
 
1. INTRODUCTION 

Chitosan extraction from crustacean biomass, such 
as shrimp shells and squid pens, predominantly uses 
conventional chemical methods involving strong acids 

and bases. These traditional protocols typically utilize 
sodium hydroxide (NaOH) for deproteinization and 
hydrochloric acid (HCl) for demineralization. While 
such treatments effectively enhance extraction yields, 
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they raise substantial environmental and occupational 
health concerns due to the generation of alkaline and 
acidic effluents. Improper disposal of these chemical 
residues can result in significant ecological damage, 
including water and soil contamination, as well as 
bioaccumulation and endocrine disruption in 
ecosystems (Dong et al., 2023; Egorov et al., 2023; Kim 
et al., 2023). Workers involved in these processes are 
also at risk due to the corrosive nature of the chemicals, 
which can cause burns and respiratory complications 
(Abbas and Al-Shammari, 2022; Hegde and Selvaraj, 
2024). Furthermore, these aggressive extraction 
conditions may compromise the structural integrity of 
chitosan, especially its molecular weight and degree of 
deacetylation (Ibrahim et al., 2019). In response to 
these drawbacks, alternative extraction techniques 
have been explored. These include milder organic acid 
treatments and biological methods such as enzymatic 
hydrolysis and microbial fermentation (Beaney et al., 
2005; Gohi et al., 2016). Although these methods are 
environmentally friendlier, they often suffer from low 
extraction efficiencies and extended processing 
durations, limiting their scalability and industrial 
applicability (Hegde and Selvaraj, 2024). The 
variability in raw material composition, particularly in 
protein, mineral, and chitin content, further 
complicates process standardization and affects the 
consistency of the final chitosan product (Ibrahim et al., 
2019; Ooi et al., 2021). 

Amidst these challenges, deep eutectic solvents 
(DES) have emerged as promising green alternatives 
for biopolymer extraction. Composed of a hydrogen 
bond acceptor (HBA) and donor (HBD), DESs possess 
unique physicochemical properties such as tunable 
polarity, low toxicity, and biodegradability (Bisht et al., 
2021; Morais et al., 2020; Paiva et al., 2014). These 
solvents are effective under mild conditions, reducing 
energy consumption and chemical waste. For instance, 
Triunfo et al. (2022) achieved a 98% demineralization 
efficiency using natural DESs on Hermetia illucens, 
outperforming conventional acid-based approaches. 
Bradić et al. (2019) further demonstrated that DES can 
selectively extract chitin from crustacean shells while 
preserving its structural integrity. Additionally, DESs 
support deacetylation reactions, as shown by (Vicente 
et al., 2020), enabling the production of high-quality 
chitosan with tailored physicochemical properties. 

DES-based extractions still face technical 
challenges such as high viscosity, inconsistent 
performance, and limited scalability. Recent studies 
propose solutions including the use of co-solvents or 
ternary DESs to improve mass transfer, and response 

surface methodology for optimizing solvent 
composition and extraction parameters (Szopa et al., 
2024). Efforts to enhance solvent recyclability through 
closed-loop regeneration systems are also progressing. 
Furthermore, molecular modelling and spectroscopic 
tools have helped clarify how DESs interact with 
various chitinous substrates, revealing that solvent 
performance is highly dependent on biomass type (Li et 
al., 2022). For example, crustacean-based substrates 
rich in minerals require acidic DESs for 
demineralization, while fungal biomass with high 
glucan content may benefit from milder, protein-
targeting DESs (Bradić et al., 2019). Understanding and 
matching DES systems to substrate characteristics is 
thus crucial for process refinement and broader 
applicability. 

Furthermore, emerging studies have begun to 
demonstrate the application potential of DES-extracted 
chitosan in domains such as biomedicine and 
environmental engineering. Chitosan obtained via 
natural DESs has shown superior physicochemical 
properties, such as higher degree of deacetylation (up 
to 91%) and preserved molecular weight (~481 kDa), 
which are crucial for biomedical functionalities like 
drug delivery, wound healing, and antimicrobial 
coatings (Kyriakidou et al., 2021; Zhou et al., 2014). In 
environmental contexts, DES-derived chitosan exhibits 
enhanced solubility and surface activity, improving its 
performance in water treatment and heavy metal 
adsorption (Renault et al., 2009). These advantages, 
often unattainable through conventional acid–alkaline 
processes due to polymer degradation and residual 
chemical contamination, underscore the 
transformative potential of DESs in producing high-
functionality, application-ready biopolymers. This 
study provides a holistic view that bridges process 
development with application-oriented outcomes by 
presenting DES-derived chitosan’s extraction 
characteristics and functional performance. 

 
2. CHITOSAN: STRUCTURE, SOURCES, AND 

EXTRACTION METHODS 
2.1 Structure and Physicochemical Properties of 

Chitosan 
Chitosan is a linear polysaccharide primarily 

composed of β-(1→4)-linked d-glucosamine units 
derived from the partial or complete alkaline 
deacetylation of chitin. This transformation removes 
acetyl groups from N-acetyl-d-glucosamine residues, 
increasing the number of free amino groups available 
along the polymer chain (Hemmami et al., 2024; Sinardi 
et al., 2018; Suneeta et al., 2016). The degree of 

Table 1. Production yields, purity levels, and environmental benefits of various chitosan sources 
Sources Yields (%) Purity (%) sustainability potential 
Crustaceans ~30–40 ~85–95 Moderate (by-product, seasonal) (Huang et al., 

2018; Vicente et al., 2021) 
Insects ~15–28 ~70–90 High (fast reproduction, less resource use)  

(Yi et al., 2024) 
Fungal ~4–9 ~77–90 High (Scalable, controlled cultivation) 

(Cao et al., 2012). 
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deacetylation (DDA) is a critical structural parameter, 
reflecting the proportion of deacetylated units in the 
chitosan chain and significantly influencing the 
biopolymer’s physicochemical properties and 
application potential (Sarofa et al., 2025; Synowiecki 
and Nadia Ali Abdul Quawi Al-Khateeb, 2003). 

 

 
Figure 1. Chemical structure of (a) Chitin, (b) Chitosan 

 
The DDA directly determines the cationic nature of 

chitosan. In acidic environments (pH < 6.5), the amino 
groups become protonated, imparting a net positive 
charge to the polymer (Kim, 2018). This protonation 
facilitates electrostatic interactions with negatively 
charged entities, such as microbial membranes, 
proteins, and contaminants in aqueous systems. 
Consequently, chitosan exhibits notable 
bioadhesiveness, antimicrobial properties, and 
flocculating capacity, supporting its widespread use in 
biomedical applications and environmental 
remediation (Hemmami et al., 2024; Kim, 2018). 

Chitosan’s solubility is also closely linked to its 
DDA and molecular weight. High DDA values increase 
solubility in dilute acidic solutions by promoting chain 
repulsion and hydration due to the abundance of 
ionizable amino groups (Ahing and Wid, 2016; Suneeta 
et al., 2016). In contrast, chitosan with lower DDA or 
higher molecular weight often demonstrates limited 
solubility due to reduced protonation and increased 
chain entanglement. These attributes can influence 
film-forming behavior and rheological properties, 
which are essential for material processing and end-use 
performance (Potivas and Laokuldilok, 2014). 

The deacetylation process influences more than 
just functional group availability—it also affects 
molecular weight distribution, chain flexibility, and the 
distribution of deacetylated regions. Harsh alkaline 
treatment can result in polymer chain scission, 
reducing molecular weight and altering viscosity, 
mechanical strength, and thermal stability (Potivas and 
Laokuldilok, 2014; Synowiecki and Nadia Ali Abdul 
Quawi Al-Khateeb, 2003). Studies using molecular 
simulations suggest that non-uniform deacetylation 
can affect self-assembly, aggregation, and solubility 
behavior (Cambiaso, 2025). 

Dacetylation parameters, such as temperature, 
alkali concentration, and exposure time, enable 
tailoring of chitosan’s solubility, cationic properties, 
and reactivity, which must be controlled to meet 
specific functional requirements. Chitosan with a high 
DDA is particularly suited for applications requiring 
high chemical reactivity and solubility, such as drug 
delivery or water purification, whereas lower DDA 
chitosan may be preferred for applications requiring 

enhanced mechanical strength (Ahing and Wid, 2016; 
Potivas and Laokuldilok, 2014; Sarofa et al., 2025). 
Thus, understanding and optimizing the structural 
determinants of chitosan remains a pivotal step in 
maximizing its application versatility. 
 
2.2 Conventional Extraction Techniques 

The conventional extraction of chitosan from raw 
chitin-containing biomass, such as crustacean shells, 
primarily involves a two-step chemical process: 
demineralization and deproteinization. In the 
demineralization phase, hydrochloric acid (HCl) is 
typically used to dissolve inorganic components, 
mainly calcium carbonate. Protocols commonly employ 
dilute HCl solutions with concentrations ranging from 
1% to 3% (w/v), which are sufficient to remove 
mineral content while minimizing structural damage to 
chitin (Abidin et al., 2020; Hossain and Iqbal, 2014). 
Gîjiu et al. (2022) and Hossain and Iqbal (2014) 
demonstrated that treating raw material with 3% HCl 
at approximately 25°C for 1 hour yields efficient 
mineral removal without excessive depolymerization. 
However, extended exposure or harsher acid 
conditions can lead to degradation of the chitin 
polymer, adversely affecting the molecular weight and 
acetylation profile of the final product (Abidin et al., 
2020; Percot et al., 2002). 

Subsequent deproteinization uses sodium 
hydroxide (NaOH), which disrupts and solubilizes 
proteinaceous materials. Treatment conditions vary 
considerably based on the biomass source and targeted 
purity level. For instance, milder conditions may 
involve 4% NaOH at ambient temperature (≈28°C), 
whereas more aggressive protocols use 50% NaOH at 
110°C for up to 3 hours to achieve complete 
deproteinization (Gîjiu et al., 2022; Hossain and Iqbal, 
2014; Nardo et al., 2019). While higher concentrations 
and temperatures enhance protein removal, they can 
also degrade the chitin matrix, resulting in low-
molecular-weight chitosan with an altered degree of 
deacetylation (Gîjiu et al., 2022; Pachapur et al., 2015). 

To optimize these steps, experimental designs such 
as response surface methodology and Box–Behnken 
models have been employed, allowing for systematic 
assessment of variables like reagent concentration, 
temperature, and exposure time (Arpi et al., 2022; Gîjiu 
et al., 2022). These models facilitate the identification 
of parameter combinations that balance effective 
purification with minimal biopolymer degradation, 
tailored to specific source materials (Abidin et al., 2020; 
Hossain and Iqbal, 2014; Percot et al., 2002). 

Despite their effectiveness, acid-base extraction 
methods pose several environmental and technical 
challenges. Substantial quantities of hazardous 
chemical waste are generated, necessitating costly and 
resource-intensive neutralization and disposal 
procedures (Kaur and Dhillon, 2013; Zulkarnain et al., 
2024). These include HCl and NaOH effluents, which, if 
mismanaged, contribute to environmental pollution 
(Maddaloni et al., 2020; Tan et al., 2022). Additionally, 
processes involving high temperatures significantly 
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increase energy consumption and further elevate the 
risk of polymer degradation (Maddaloni et al., 2020). 

Maintaining the delicate balance between efficient 
protein removal and the preservation of chitosan’s 
structural and functional integrity remains a technical 
bottleneck. Harsh alkali conditions, although effective, 
may cause over-deacetylation, negatively affecting the 
solubility and biological activity of the chitosan 
(Maddaloni et al., 2020). In response, alternative 
approaches such as microwave-assisted extraction 
have been explored for their ability to reduce 
processing time and energy demands, although issues 
related to consistency and scalability persist (Apriyanti 
et al., 2018). 

 
2.3 Green Chemistry in Biopolymer Extraction 

Green chemistry in biopolymer extraction 
encompasses environmentally sustainable approaches 
prioritizing energy efficiency, low toxicity, and 
resource recycling. These methods align with the 
twelve principles of green chemistry, aiming to reduce 
the ecological footprint and the operational burden 
associated with traditional chemical processes 
(Chemat et al., 2012). Green extraction focuses on 

minimizing waste and using safer solvents and 
technologies to achieve high extraction efficiency with 
reduced environmental and health risks. 

Efficiency in green extraction is achieved through 
innovative process intensification techniques. 
Approaches such as one-pot extraction, which combine 
multiple stages into a single operational step, 
significantly reduce processing time and resource use 
(Mukherjee et al., 2023). Technologies like subcritical 
water extraction (Ferreira et al., 2023), microwave-
assisted extraction, and ultrasound-assisted extraction 
have demonstrated capabilities to accelerate mass 
transfer, enhance solubilization, and reduce energy 
consumption while maintaining or improving product 
yield and quality (Boggia et al., 2016; Pal and Jadeja, 
2019). These methods streamline workflows and 
support high process efficiency with lower operational 
inputs. 

Toxicity minimization is another cornerstone of 
green extraction. Traditional methods often rely on 
volatile organic compounds (VOCs) or corrosive 
mineral acids and bases that are hazardous to both 
human health and the environment (Mahmood and 
Moniruzzaman, 2019). In contrast, green extraction 

Tabel. 2. Comparative analysis of conventional and des-based chitosan extraction 

Aspect Conventional Extraction DES-based Extraction 

Process 
Description 

Chemical demineralization (HCl) and 
deproteinization (NaOH) under harsh 
conditions (high temperature, strong 
acids/bases) (Rissouli et al., 2024). 

Utilizes deep eutectic solvents (DESs) 
composed of hydrogen bond donors and 
acceptors, operating under milder, 
environmentally friendly conditions (Wang, 
2023) 

Extraction 
Efficiency 

High demineralization (up to 97–98%) and 
deproteinization (~90%), but requires 
multiple chemical treatments (Rissouli et al., 
2024). 

Demineralization ~97.78±0.73%, 
deproteinization ~81.33±0.91% using lactic-
NADES (Sunton et al., 2024); similar 
efficiencies (up to 99%) also achieved with 
novel ternary DESs. 

Yield 
Yields typically range from 15% to 40%, 
depending on the raw material and process 
optimization (Belwal et al., 2020). 

Chitosan yield using DES methods reported at 
~21–25%, depending on solvent type and 
extraction conditions (Sunton et al., 2024; 
Wang, 2023). 

Molecular 
Weight 

Chemical methods often cause degradation, 
resulting in variable molecular weights (200–
500 kDa) (Rissouli et al., 2024). 

Molecular weight tunable depending on DES 
composition: 264–541 kDa with lactic 
acid/glycerol DES; malic acid systems yield 
lower MW (~<300 kDa) (Wang, 2023). 

Purity 
High purity (>90%) achievable, but risk of 
residual chemical contamination (Belwal et 
al., 2020). 

High purity (>91–92%) maintained even after 
multiple recycling cycles of DES (Sunton et al., 
2024; Wang, 2023). 

Recyclability 
Solvents (acids/bases) are not recyclable; 
significant chemical waste is generated 
(Calvo-Flores et al., 2018). 

DESs are recyclable for multiple cycles 
without significant efficiency loss (Isci & 
Kaltschmitt, 2022). 

Environmental 
Impact 

Significant due to the use of strong 
acids/bases, large water consumption, and 
generation of hazardous waste (Mohan et al., 
2022). 

Environmentally friendly; reduced chemical 
waste, lower toxicity, and alignment with 
green chemistry principles (Sunton et al., 
2024; Wang, 2023). 

Energy 
Consumption 

High, due to heating and intensive washing 
steps (Rissouli et al., 2024). 

Lower, especially when combined with 
microwave or ultrasound-assisted extraction 
(Coscarella et al., 2023; Durante-Salmerón et 
al., 2024). 
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employs non-toxic and biodegradable solvents, such as 
ethanol, water under subcritical conditions, and deep 
eutectic solvents (DESs), which are characterized by 
low volatility and high recyclability (Pal and Jadeja, 
2019). Techniques like electroporation, which enable 
solvent-free extraction, further reduce the chemical 
load of biopolymer recovery processes (Eleršek et al., 
2020). 

Resource recycling and circular economy 
integration are fundamental to green extraction. 
Closed-loop processes that enable solvent recovery and 
by-product valorization reduce waste and enhance the 
operation’s sustainability. Studies have demonstrated 
that solvent systems in green extraction methods can 
be effectively recovered and reused without significant 
performance loss, contributing to reduced material 
demand and environmental burden (Makris & Lalas, 
2020; Mukherjee et al., 2023). Moreover, lifecycle 
assessment studies support that these methods lower 
energy use and mitigate greenhouse gas emissions 
(Güler et al., 2024). 

 
3. DEEP EUTECTIC SOLVENTS: DESIGN, 

MECHANISM, AND APPLICATION IN CHITOSAN 
EXTRACTION 
Deep eutectic solvents (DES) are a class of “green” 

solvents formed by mixing two or three components to 
create a eutectic system with a melting point 
significantly lower than that of the pure individual 
components (Hong et al., 2019; Kianpour et al., 2022; 
Velez and Acevedo, 2022). Their formation relies 
heavily on strong hydrogen bonding interactions 
between the hydrogen bond donor (HBD) and the 
hydrogen bond acceptor (HBA), disrupting the 
crystalline structures of the original compounds 
(Abbott et al., 2007; Doherty and Acevedo, 2018; 
Hammond et al., 2016). Consequently, DES mixtures 
remain liquid at relatively low temperatures, 
facilitating their use in various green extraction 
applications. 

DES are classified based on the number of 
constituents: binary systems consist of one HBA and 
one HBD mixed at a specific molar ratio to reach a 
eutectic point, such as the classic mixture of choline 
chloride with urea or glycerol (Hong et al., 2019; 
Kianpour et al., 2022; Velez and Acevedo, 2022). 
Ternary systems involve three components, allowing 
for the fine-tuning of properties like viscosity, polarity, 
and solubility, thereby broadening the applicability of 

DES in fields like bioactive compound extraction and 
nanomaterial synthesis (Abranches et al., 2019; Kumar 
and Banerjee, 2021; Pour et al., 2023). 

Key components of DESs are quaternary 
ammonium salts, notably choline chloride as the HBA, 
and small molecular HBDs such as urea, glycerol, and 
organic acids like citric or succinic acid (Hammond et 
al., 2016; Hong et al., 2019; Paiva et al., 2014). The 
hydrogen bonding interaction between HBA and HBD 
not only depresses the melting point but also imparts 
unique properties such as biodegradability, low 
toxicity, and economic viability (Doherty and Acevedo, 
2018; Paiva et al., 2014; Velez and Acevedo, 2022). 

Compared to ionic liquids (ILs), DESs differ 
significantly in formation, properties, and 
environmental impact. DESs are prepared by simply 
mixing HBAs and HBDs, while ILs require complex 
synthesis to match specific cations and anions 
(Mahaindran et al., 2023; Suriyanarayanan et al., 2019; 
Vahidi et al., 2023). DESs typically exhibit moderate 
viscosity and polarity, which is excellent for 
biopolymer extraction, while ILs offer high 
electrochemical stability but face concerns regarding 
environmental toxicity and cost (Aboshatta and 
Magueijo, 2021; Espino et al., 2016; Mahaindran et al., 
2023). DESs, derived from natural, biodegradable 
materials, present a greener alternative with simpler 
preparation and lower environmental burden (Halder 
and M. Natália D. S. Cordeiro, 2019; Morais et al., 2020). 

The formulation of DESs for chitosan extraction 
commonly involves choline chloride as HBA paired 
with HBDs like lactic acid, glycerol, acetic acid, or malic 
acid (Paiva et al., 2014; Vicente et al., 2020). Lactic acid 
contributes not only to the hydrogen bond network but 
also to biomass demineralization and deproteinization 
(Fraige et al., 2018; Strižincová et al., 2024). Glycerol’s 
polyhydroxyl groups enhance solvation and viscosity 
control (Wang, 2023). Acetic acid, often added in small 
amounts (~7.5%), provides additional acidity to aid 
mineral removal without causing significant polymer 
degradation (Wang, 2023; Zhang and Neau, 2001). 
Malic acid, although less commonly used, brings a 
dicarboxylic structure that strengthens the hydrogen 
bonding network and improves extraction 
performance (Paiva et al., 2014; Vicente et al., 2020). 

Choline chloride’s quaternary ammonium 
structure promotes efficient hydrogen bonding, crucial 
for disrupting the crystalline structure of chitin during 
extraction (Doherty and Acevedo, 2018; Paiva et al., 

 

Table 3. Comparison of conventional vs DES methods for chitosan extraction 
Parameter Conventional Method DES Method 

Yield (%) 20-30 % (Depending on source) 
(Sunton et al., 2024) 

30-45% (higher, depending on DES 
and source) (Wang, 2024) 

Molecular Weight (kDa) High variability, often degraded 
(Zhang & Neau, 2001) 

264-655 kDa (controlled, higher 
stability) 
(Wang, 2023)  

Degree of acetylation (%) 79-85 (Sánchez et al., 2021) 85-95 (higher, purer product)  
(Sunton et al., 2024) 

Environmental impact High chemical use; significant waste 
(Ben Aoun et al., 2024)  

Low chemical usage, eco-friendly, and 
recyclable solvents  
(Khandelwal et al., 2016) 
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2014; Pandey et al., 2017). Organic acids, acting as 
HBDs, help dissolve proteins and minerals while 
maintaining chitosan integrity by balancing acidity and 
hydrogen bonding strength (Pandey et al., 2017). 
Importantly, solvent viscosity must be optimized, too 
high viscosity can hinder solute diffusion, while 
controlled addition of water or adjusting HBA/HBD 
ratios can mitigate this issue and enhance mass transfer 
(AlYammahi et al., 2023). 

Mechanistically, DESs disrupt the hydrogen-
bonded networks binding proteins, minerals, and chitin 
in crustacean biomass. DESs form new hydrogen bonds 
with functional groups in proteins and minerals, 
destabilizing and solubilizing these components 
(Bradić et al., 2019; Roda et al., 2019). Specific 
interaction between acidic DES components and 
calcium carbonate promotes solubilization into calcium 
salts, with minimal chitin degradation (Vigier et al., 
2015; Zhang & Neau, 2001). The optimized hydrogen 
bonding network ensures selective dissolution of non-
chitinous material, preserving chitin’s molecular 
integrity (Vicente et al., 2020; Zhao, 2019). 

Experimental findings corroborate the efficiency of 
DESs. Bradić et al. (2019) extracted chitin from lobster 
and shrimp shells using choline chloride-based DESs 
with various donors, achieving mild processing and 
high biopolymer integrity. Rodrigues et al. (2021) 
demonstrated the efficacy of low-phytotoxic DESs in 
recovering chitin from brown crab shells, while Bisht et 
al. (2021) showcased aDESs for effective dissolution 
without degradation. Zhao (2019) combined citric acid 
and DES with microwave assistance, optimizing 
demineralization and deproteinization. Huang et al. 
(2018) employed naturally derived DESs for high-
purity chitin extraction, while Saravana et al. (2018) 
extended DES applications to fabricate chitin-based 
films, supporting downstream valorization. 

Optimizing parameters such as temperature, 
solvent-to-solid ratio, and microwave irradiation time 
is crucial. Moderate temperatures reduce DES viscosity 
and enhance extraction kinetics without polymer 
degradation (Arpi et al., 2022; Segaran et al., 2022). The 
solvent-to-solid ratio must balance solvent efficiency 
and economic usage (Palai et al., 2025; Yusof, 2023). 
Microwave irradiation time must be tuned to maximize 
extraction yield without thermal damage (Arpi et al., 
2022; Palai et al., 2025). 
 
4. PERFORMANCE EVALUATION AND INDUSTRIAL 

POTENTIAL OF DES IN CHITOSAN EXTRACTION 
The extraction of chitin and chitosan using deep 

eutectic solvents (DESs) is strongly influenced by the 
solvent’s composition, viscosity, and pH, critically 
impacting extraction yield, purity, and molecular 
weight. DES composition is pivotal, as the selection of 
hydrogen bond acceptor (HBA) and hydrogen bond 
donor (HBD) components defines the polarity and 
solvation capacity of the solvent. Systems based on 
choline chloride with glycerol, malic acid, or urea have 
been successfully applied to dissolve α-chitin and 
extract chitin from crustacean shells (Huang et al., 
2018; Vicente et al., 2020). Tailoring DESs with milder 

acid functionalities allows simultaneous 
demineralization and deproteinization while 
preserving the chitin structure (Rodrigues et al., 2021) 
and ternary DES systems have been developed to 
enable room-temperature extraction while preventing 
polymer degradation (Vicente et al., 2021). 

Viscosity also plays a major role, as highly viscous 
DESs can hinder mass transfer and diffusion, leading to 
reduced extraction yields despite their ability to 
stabilize dissolved biopolymers (Ling and Hadinoto, 
2022). Lower viscosity enhances kinetics but risks 
molecular degradation if not carefully managed. 
Similarly, pH is crucial: acidic DESs promote 
demineralization and deproteinization but may induce 
chain hydrolysis (Vicente et al., 2021), whereas near-
neutral DESs better preserve molecular weight and 
chain integrity (Rodrigues et al., 2021). Thus, optimal 
DES design involves a careful balance between 
composition, viscosity, and pH to achieve high-purity 
chitosan with minimal degradation. 

Variations in DES formulation further impact 
chitosan’s deacetylation degree and chain length 
compared to conventional processes. Natural DESs 
composed of choline chloride and organic acids have 
produced chitosan with a high degree of deacetylation 
(91%) and molecular weight (~481 kDa) (Kimi and 
Hamdi, 2023), while conventional alkaline treatments 
often cause substantial chain scission (Hossain and 
Iqbal, 2014). DES viscosity also influences uniformity; 
high-viscosity solvents impede diffusion and cause 
heterogeneous extraction, whereas optimized DESs 
enhance solute penetration and control deacetylation 
without extensive degradation (Nouri et al., 2016). 
Moreover, the mild pH conditions in DES systems 
minimize glycosidic bond cleavage, yielding chitosan 
with superior macromolecular structure for biomedical 
and materials applications. 

Beyond extraction performance, the recyclability 
and stability of DESs are essential for sustainable use. 
Repeated recycling without proper regeneration leads 
to impurity accumulation, disruption of hydrogen 
bonding, increased viscosity, and pH drift factors that 
compromise extraction efficiency (Durante-Salmerón 
et al., 2024). Studies have shown that DESs can typically 
be reused for up to 4–6 cycles without significant loss of 
performance, particularly when low volatility or 
organic acid-based systems are used (Isci and 
Kaltschmitt, 2022). However, solvent degradation 
accelerates after multiple cycles if no regeneration 
steps are applied. Regeneration techniques include 
simple filtration, vacuum distillation, or liquid–liquid 

phase separation to remove residual biomass or 
degradation products (Huang et al., 2008). Adjusting 
water content or rebalancing the HBA:HBD ratio is also 
effective in restoring viscosity and pH (Ijardar et al., 
2022).Therefore, to support industrial feasibility, 
robust, energy-efficient regeneration protocols must be 
developed alongside solvent screening and process 
optimization strategies (Ijardar et al., 2022). 

When comparing DES-based extraction with 
conventional acid–base (HCl/NaOH) methods, clear 
advantages emerge regarding product quality and 
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environmental sustainability. DES processes produce 
chitosan with high deacetylation degrees and 
molecular weights while preserving crystallinity (Kimi 
and Hamdi, 2023; McReynolds et al., 2022). In contrast, 
harsh acid–alkali protocols typically disrupt crystalline 
structures and lower molecular weights through severe 
hydrolysis (Verardi et al., 2023). Although conventional 
steps such as demineralization and deproteinization 
may proceed faster, the sequential and aggressive 
treatments increase the risk of polymer degradation. 
DES extractions, while kinetically slower, benefit from 
integrated, one-pot operations that simplify processing 
and minimize solvent handling (Zhao, 2019). 

Furthermore, DES systems yield chitosan with 
higher purity due to selective dissolution and minimal 
side reactions (Kimi and Hamdi, 2023; McReynolds et 
al., 2022), unlike HCl/NaOH methods, which can leave 

residual contaminants or induce unwanted reactions. 
Technological improvements, such as microwave-
assisted DES extraction, promise to further reduce 
processing times without sacrificing the environmental 
benefits intrinsic to DES systems. 

However, the scale-up of DES-based extraction 
faces thermal and mass transfer challenges at the pilot 
level. High DES viscosity impairs convective heat 
transfer and solute diffusion, requiring sophisticated 
thermal management and mass transfer enhancements 
(Vicente et al., 2021; Алексеев et al., 2022). Elevated 
operating temperatures can improve diffusion 
(Abdulbari and Basheer, 2019), but risk polymer 
degradation. Reactor design modifications and the 
integration of sonochemical or microchannel 
technologies have shown potential for improving 
thermal profiles and mass transfer in pilot-scale 

Table 4. DES recycling and regeneration strategies 
Study / Reference Regeneration Technique Cycles Without 

Efficiency Loss 
Notes 

Jeong et al. (2015) Filtration, dilution with 
water 

Up to 5 Effective for particulate-
rich DES, a low-cost 
method 

Isci and Kaltschmitt 
(2022) 

Vacuum distillation, phase 
separation 

4–6 cycles Suitable for low-
volatility DES; energy-
intensive 

Nakasu et al. (2025) Rebalancing HBA:HBD 
ratio, pH adjustment 

3–5 with correction steps Requires initial 
composition data; 
stabilizes 
physicochemical profile 

Siddiqui et al. 
(2025) 

Removal of degradation 
products via liquid-liquid 
extraction 

Up to 6 cycles post-
regeneration 

Targeted for 
protein/polysaccharide-
rich systems 

Ijardar et al. (2022) Integrated monitoring and 
viscosity control 

Varies (dependent on 
formulation) 

Recommended for 
industrial scaling with 
real-time feedback 
systems 

 

 

Table 5. DES vs conventional cost comparison 
Parameter Conventional Method 

(HCl/NaOH) 
DES-Based Method References 

Solvent Cost Low (bulk acid/base); corrosive Moderate (choline chloride 
and organic acids) 

Paiva et al. (2014), 
Wang (2023) 

Equipment Requires corrosion-resistant 
materials (e.g., stainless steel) 

Mild reaction conditions; 
compatible with glass/ceramic 
setups 

Morais et al. (2020) 

Energy 
Consumption 

High (thermal treatment, 
intensive washing) 

Lower (due to mild 
temperatures and fewer steps) 

Coscarella et al. 
(2023) 

Waste 
Management 

High cost (toxic effluent, 
neutralization required) 

Low (biodegradable, less 
hazardous, recyclable) 

Abd El-Ghany et al. 
(2025), Vinci et al. 
(2023) 

Solvent 
Recovery 
Feasibility 

Not recyclable; high disposal 
cost 

Up to 4–6 cycles with 
regeneration (e.g., filtration, 
rebalancing) 

Isci and Kaltschmitt 
(2022), Jeong et al. 
(2015) 

Estimated 
Operational 
Cost 

Medium–High (due to waste 
handling) 

Medium (depending on 
recovery and scale-up) 

Nikolić et al. 
(2019), Siddiqui et 
al. (2025) 

Scalability Established but environmentally 
burdensome 

Emerging, promising with 
optimization 

Vicente et al. 
(2020), Vinci et al. 
(2023) 
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systems (Amaral et al., 2021; Liu et al., 2020; Prawang 
et al., 2019). 

From an economic and environmental standpoint, 
life cycle assessments (LCA) integrating life cycle 
costing (LCC) consistently show that DES-based 
extraction systems offer reduced environmental 
impacts compared to conventional acid-base methods. 
DES extraction systems reduce emissions, toxic waste, 
and energy consumption due to milder reaction 
conditions (Serna-Vázquez et al., 2021; Vinci et al., 
2023). While initial costs for DES preparation and 
solvent recovery infrastructure can be higher, 
estimated at 10–20% above traditional systems, these 
are frequently offset by significant savings in waste 
treatment, chemical handling, and energy input over 
time (Isci and Kaltschmitt, 2022; Nikolić et al., 2019). 
Comparative cost analyses indicate that conventional 
methods often incur higher downstream remediation 
costs due to corrosive waste management, whereas 
DES processes enable closed-loop reuse and safer 
handling. To enhance practical insight, Table X 
qualitatively compares economic parameters between 
DES-based and traditional extraction routes. 

Nonetheless, economic competitiveness depends 
on factors such as solvent recyclability, process 
optimization, and capital investment in specialized 
equipment (Vinci et al., 2023). Future developments 
should focus on enhancing solvent recovery efficiency 
and refining scale-up designs to ensure that DES-based 
chitosan extraction can achieve both technical and 
economic viability.  

 
5. CONCLUSION 

Deep eutectic solvents (DESs) have emerged as a 
transformative medium for chitosan extraction, 
providing high extraction efficiency, superior product 
purity, and opportunities for solvent recycling. A 
natural DES composed of choline chloride and 
acetogenin demonstrated the extraction of chitosan 
from snail shells with a high degree of deacetylation 
(91%) and molecular weight (481 kDa), reflecting the 
selective and gentle nature of DES extraction processes 
compared to conventional chemical methods (Kimi and 
Hamdi, 2023; Li and Row, 2016). The strong hydrogen-
bonding capabilities and tunable physicochemical 
properties of DESs facilitate disruption of chitin 
networks and enable efficient deacetylation and 
solubilization, thus preserving the structural and 
functional qualities of chitosan (Tang et al., 2015). 

DES-based systems also exhibit low toxicity, 
biodegradability, and stability, enabling their reuse 
across multiple cycles with minimal performance loss 
(Li and Row, 2016). Their ability to be regenerated 
economically supports sustainable extraction 
processes with lower environmental footprints than 
traditional volatile organic solvents. Together, these 
findings position DESs as superior alternatives for 
producing high-purity chitosan applicable to 
biomedical, pharmaceutical, and industrial fields (Kimi 
and Hamdi, 2023; Tang et al., 2015). 

Future perspectives in DES-based chitosan 
extraction increasingly involve integrating DESs with 

intensified extraction technologies such as ultrasound-
assisted extraction (UAE) and microwave-assisted 
extraction (MAE). UAE enhances mass transfer via 
cavitational forces, creating localized high-pressure 
zones that disrupt chitin matrices and promote DES 
penetration (Coscarella et al., 2023; Durante-Salmerón 
et al., 2024; Wang, 2023). MAE, by contrast, utilizes 
rapid, uniform heating through dipolar rotation and 
ionic conduction mechanisms, improving solvent–
matrix interactions and boosting extraction rates while 
maintaining chitosan’s structural integrity (Hao et al., 
2021). These synergies reduce processing time, solvent 
consumption, and energy input, fully aligning with the 
principles of green chemistry (Durante-Salmerón et al., 
2024; Hao et al., 2021). 

Process optimization approaches such as response 
surface methodology have demonstrated the feasibility 
of fine-tuning extraction parameters, including solvent 
composition, ultrasound/microwave intensity, and 
extraction duration, to maximize recovery efficiency 
and minimize environmental impact (Coscarella et al., 
2023; Wang, 2023). 

Development of biomass-derived DESs represents 
another critical advancement. Derived from renewable 
raw materials such as lignin, carbohydrates, and 
agricultural residues, these DESs embody circular 
economy principles by valorizing waste streams (Kim 
et al., 2020; Onwucha et al., 2023). Their low vapor 
pressure, tunability, and favorable environmental 
characteristics, combined with their ability to close the 
production loop, render them highly attractive for 
sustainable industrial applications (Satlewal et al., 
2018; Tang et al., 2017; Wang, 2023). Strategic 
molecular design of biomass-based DESs can 
significantly enhance pretreatment and solubilization 
efficiencies (Ryu et al., 2024), while their application in 
recycling spent materials, such as cathode active 
components from lithium batteries, further highlights 
their potential (Morina et al., 2021). 

Ecotoxicity and biodegradability studies affirm 
that biomass-derived DESs generally outperform 
traditional organic solvents in terms of environmental 
safety, supporting the transition to regenerative and 
closed-loop production models (García et al., 2015; 
Srivastava, 2020). Comprehensive life cycle and toxicity 
assessments are vital to ensure that the benefits of 
DESs are fully realized in sustainable industrial 
contexts (Hariyanto et al., 2023). 
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