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In the pharmaceutical sector, accurate forecasting is imperative due to the diverse 
range of medicines. Inadequate inventory levels risk patient well-being, whereas 
excessive stock can result in financial waste. This study categorizes historical sales 
data from a Denpasar-based pharmacy industry into clusters via K-Means clustering, 
analyzing 106 medicines over 60 months, with 54 months for training and six for 
testing. Four distinct Bi-LSTM (Bidirectional Long Short-Term Memory) based 
forecasting models emerged, tailored to each cluster's characteristics. Cluster 0's 
model, with two input neurons and three hidden layers, underwent 220 epochs of 
training, achieving an MAE of (0.0835) and an MSE of (0.0165). Cluster 1's model, 
more intricate with ten input neurons and two hidden layers, was trained for 136 
epochs, resulting in an MAE of (0.1299) and an MSE of (0.0309). Cluster 2's model 
resembled Cluster 0 but with reduced neurons in the hidden layers, trained for 20 
epochs, yielding an MAE of (0.0899) and an MSE of (0.0380). Finally, Cluster 3's model 
featured two input neurons and a single hidden layer with 128 neurons, trained for 
150 epochs, attaining an MAE of (0.0239) and an MSE of (0.094). Forecast application 
of Cluster 0's model for individual medicine using Bi-LSTM demonstrated its efficacy 
in predicting demand compared with machine learning forecast models such as 
Random Forest, Gradient Boosting, Support Vector Machine, and Neural Network. 
The model's adaptability to demand fluctuations can guide pharmacies in managing 
their inventory and optimizing supply chain operations, sales, marketing strategies, 
and product development. 
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1. Introduction 

The pharmaceutical industry has the most robust 
research and development and high supply chain costs. 
With the expiration of patents and the increase in the 
production of generic medicines, pharmaceutical 
companies must focus on developing more efficient and 
effective supply chains to face the challenges of demand 
forecasting and supply management [1]. 
Kochakkashani et al. [2]  also discussed planning the 
supply chain for medicines and vaccines during the 
COVID-19 pandemic, which includes cold and non-cold 
chains and various types of medicines and vaccines. The 
optimization method creates a demand forecast for 
medicine in four stages, aiming to minimize costs in the 
medicine supply chain while maintaining service levels. 
The pharmaceutical industry is vital in providing health 
medicines and medicines the public needs. Rapidly 
increasing demand and the complexity of the factors 
influencing consumption patterns drive more careful 
planning and management of supplies. Accurate 

demand forecasting is essential to maintain adequate 
medicine availability for patients. In contrast, 
inaccuracies in forecasting can lead to shortages of 
stocks that can treat the patients' fatality and health, and 
excess stock can cause a loss for the company. 
Developing a reliable forecasting model is significant 
for maintaining the smooth production and distribution 
of medicine and optimizing inventory management. 

The pharmacy industry's big data and machine 
learning have become increasingly important in the 
post-COVID-19 era and the industrial revolution 4.0. 
Big data generated by various sources, such as 
electronic medical records and patient data, provides 
deeper insight into public health trends; by combining 
machine learning capabilities, the accuracy and 
responsiveness of pharmaceutical forecasting to rapid 
changes in the healthcare environment increase. Actual 
practical application in pharmaceutical forecasting has 
proven that machine learning can identify patterns that 
are difficult to detect by conventional methods. This 
update enables healthcare providers and 
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pharmaceutical companies to anticipate demand for 
medicine, manage supply chains more efficiently, and 
take better steps to respond to global health crises such 
as the COVID-19 pandemic. Machine learning for 
forecasting also allows personalization of care based on 
individual data, ensuring more precise and effective 
treatment [3]. 

This study uses the K-means clustering and Bi-LSTM 
(Bidirectional Long Short-Term Memory) methods as 
an approach that can improve the accuracy of demand 
forecasting in the pharmaceutical industry, especially 
during the Pharma 4.0 period. Pharma 4.0 is a concept 
that represents the industry's adoption of digitalization-
enabled techniques and processes, cloud computing, 
the Internet of Things, and big data to gain a 
competitive advantage in domestic and global markets 
[4] . By grouping based on similar patterns, the K-means 
clustering method identifies groups of data with similar 
demand behavior, enabling a more focused focus on 
specific forecasts and thereby increasing the accuracy 
and effectiveness of demand forecasting. The K-Means 
clustering method serves as a data segregation 
approach that groups pharmaceutical sales data into 
distinct clusters based on historical demand patterns. 
By grouping data into clusters with similar 
characteristics, the K-Means method improves the 
accuracy of demand forecasting, allowing for the 
creation of a tailored forecasting model for each cluster. 
This method effectively captures the unique variations 
and characteristics of each product group, thereby 
enhancing the accuracy and efficiency of the predictive 
model. As highlighted by Kochakkashani et al. [2], 
clustering methods such as K-Means play a significant 
role in classifying different types of drugs and vaccines 
in the supply chain. This is because the K-Means 
method has a structured framework to handle data 
heterogeneity. Ouedraogo [6] talks about how K-Means 
can help choose better machine learning models by 
effectively clustering, and Palupi and Fakhruzzaman 
[7] show how it can be used to divide pharmacies into 
groups so that marketing strategies work better. The 
flexibility and computational efficiency of the K-Means 
method make it very useful in the pharmaceutical 
industry, as it reveals patterns and trends needed in 
demand forecasting and decision-making. This study 
applies the K-Means clustering method to classify drugs 
into clusters based on historical sales patterns, which 
enables the development of a Bi-LSTM model 
specifically tailored to each cluster's characteristics. This 
approach provides a solid foundation for achieving 
accurate and responsive forecasting results. On the 
other hand, Bi-LSTM is one of the most effective neural 
network architectures for modeling time series data. Its 
main advantage is the ability to capture long-term 
dependencies in data, responding to challenges that 
often arise in demand forecasting, such as high 
fluctuations and irregular patterns.  Pharmaceutical 
sales data uses clustering to address its inherent 
complexity and diversity. We group medicines based 
on similar demand patterns. This clustering allows for 
the creation of an appropriate demand forecasting 

model, thereby improving the accuracy and efficiency 
of demand prediction, as well as simplifying data 
characteristics. This approach also improves inventory 
management and resource allocation. The application 
of clustering in this study bridges the gap between data 
heterogeneity and the need for insight, thus providing 
a solid foundation for further forecasting using the Bi-
LSTM model. The combination of K-means clustering 
and Bi-LSTM methods makes the approach superior in 
increasing demand forecasting accuracy. This 
combination will provide optimal results, especially 
when enough data or big data can be processed. 

This paper's contribution positively impacts the 
development of more sophisticated and accurate 
forecasting methods and has the potential to become an 
essential reference for professionals in the 
pharmaceutical industry facing increasingly complex 
and dynamic demand forecasting challenges. Using 
trend-based prediction results, companies can analyze 
factors influencing demand fluctuations and identify 
exploitable opportunities—ethical medicine requiring a 
doctor's prescription falls under this category. Most 
people with specific diseases usually need several 
medicine variants to help heal because the symptoms 
experienced are more than one symptom. Based on this, 
the pattern of selling medicine to each other has the 
potential to influence each other. The ability of Bi-LSTM 
to predict trends of increasing and decreasing demand 
for a type of medicine variant can be an indicator for 
companies to analyze other medicine variants that are 
likely to be affected by the trend. 

In the pharmaceutical industry, data clustering has 
the potential to reveal patterns or correlations arising 
from complex data, such as clinical trial results, patient 
data, product data, and the like. Applying clustering 
data in the pharmaceutical industry brings significant 
benefits, especially in classifying patients based on their 
disease profile or response to treatment. By grouping 
patients based on similar characteristics, 
pharmaceutical companies can identify groups of 
patients who are likely to respond similarly to certain 
medicines or therapies. This approach can advance the 
development of more focused and personalized 
treatment for each patient. In addition, data clustering 
also plays a role in the development and discovery of 
new medicines. Researchers can identify compounds 
with similar characteristics by grouping clinical trials 
and molecular data from various medicine compounds. 
This identification can assist in selecting potentially 
more efficient and effective medicine candidates. 
However, data clustering in the pharmaceutical 
industry also faces several challenges. Choosing the 
correct clustering method, interpreting accurate results, 
and handling large and complex data requires 
sophisticated technological infrastructure and in-depth 
analysis skills. 

In conclusion, this paper proposes a novel approach 
for predicting demand in the pharmaceutical industry, 
leveraging the combined power of K-Means clustering 
and Bi-LSTM models. The pharmaceutical sector faces 
unique challenges in demand forecasting due to the 
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diverse range of medicines and the critical importance 
of maintaining optimal inventory levels. The study 
systematically analyzes historical sales data from a 
Denpasar-based pharmacy industry, categorizing 
medicines into clusters using K-Means clustering. 
Subsequently, four distinct Bi-LSTM-based forecasting 
models are developed, each tailored to the specific 
characteristics of its respective cluster. 

The contributions of this research are threefold: 
1. It addresses the pressing need for accurate demand 

forecasting in the pharmaceutical industry, 
emphasizing the potential consequences of 
inadequate inventory levels on patient well-being and 
financial waste. 

2. The paper introduces an innovative methodology 
that combines data clustering and deep learning to 
enhance forecasting precision. This dual approach 
allows for a more focused, personalized forecasting 
strategy based on identified clusters. 

3. The study provides detailed insights into the 
performance of each forecasting model, highlighting 
their adaptability to diverse demand patterns within 
the pharmaceutical sector. 

The remainder of the paper is structured as follows. 
Section 2 provides an overview of the pharmaceutical 
industry's challenges, emphasizing the need for 
sophisticated demand forecasting methods. This section 
also outlines the methodology, detailing the steps taken 
in K-Means clustering and the development of the Bi-
LSTM model. Section 3 presents the experiment's 
results, showcasing the proposed approach's 
effectiveness through metrics such as Mean Absolute 
Error (MAE) and Mean Squared Error (MSE). This 
section also compares the Bi-LSTM models with 
conventional machine learning forecast models, 
demonstrating their superior ability to capture intricate 
temporal dependencies. Finally, in Section 4, the paper 
summarizes the key findings and discusses the broader 
implications of the proposed approach for the 
pharmaceutical industry. 

2. Material and method 

Big data, which refers to large, complex, and diverse 
data sets, provides significant benefits in this industry. 
Researchers can utilize clinical trials, patient records, 
and epidemiological data to comprehend diseases, 
disease patterns, and patient responses to treatment. In 
addition, big data also supports the development of 
new medicines through the analysis of genetic, 
biological, and molecular data to identify potential 
therapeutic targets and improve treatment 
effectiveness. Big data also provides advantages in 
increasing the efficiency of the medicine supply chain 
and distribution. Pharmaceutical companies can 
optimize stocks, reduce logistics costs, and identify 
demand patterns by analyzing logistics and inventory 
data. Ramesh and Santhi [5] describe the exploration of 
big data analytics in the healthcare industry, 
highlighting the potential of big data analytics and 
machine learning in addressing future healthcare 

challenges and grouping big data to form clusters with 
similar characteristics. Clustering is grouping 
documents, observations, or cases into classes with 
certain similarities. Each class or cluster contains data 
that is like each other and different from other clusters. 
The main goal of clustering is understanding and use. 
Understanding includes the initial stage of grouping, 
which can be followed by summarization (mean, 
standard deviation) and assigning a class label to each 
group for supervision-based classification purposes. 
The purpose of use focuses more on finding prototypes 
representing each group representatively, thus 
providing an abstraction of each data object.  

Previous studies have addressed demand 
forecasting in the pharmaceutical industry using 
machine learning or time series models without 
incorporating clustering techniques. Some studies try to 
guess how much a drug will sell by using simple 
Recurrent Neural Networks (RNNs) or Long Short-
Term Memory (LSTM) networks. These networks look 
at the whole dataset and don't consider the differences 
between parts of the dataset, like drugs with high 
versus low demand variability [2, 6, 7]. Some 
researchers use alternative clustering techniques, such 
as DBSCAN or hierarchical clustering, but these 
methods are often computationally intensive or poorly 
suited for segmenting large-scale sales data based on 
demand patterns [9], [10]. In addition, many forecasting 
models adopt a generic approach, applying the same 
network architecture to the entire dataset, resulting in 
suboptimal performance [13], [14]. 

This research model integrates K-Means clustering 
and Bi-LSTM to improve the accuracy of 
pharmaceutical sales forecasting. The process begins 
with historical sales data. We then apply the K-Means 
clustering method to group the data into distinct 
clusters based on sales patterns, with each cluster 
representing drugs that share similar demand 
characteristics. By handling each cluster independently, 
this clustering enables a more focused and tailored 
forecasting approach. Next, the data for each cluster is 
fed into a Bi-LSTM model that is specifically designed 
to account for its unique patterns and temporal 
dependencies. The Bi-LSTM model leverages its ability 
to handle sequential data, capturing the complex 
relationships between past and future sales trends. 
Finally, the model generates precise sales forecasts for 
each cluster, which collectively contribute to better and 
more efficient inventory management in 
pharmaceutical supply chain operations. This model is 
strong enough to handle the challenges of changing and 
varied demand in the pharmaceutical industry because 
it combines the segmentation power of K-Means with 
the predictive power of Bi-LSTM. 

2.1. K-means clustering 

K-means clustering, a versatile and widely 
employed unsupervised learning algorithm, finds 
notable applications in the pharmaceutical industry. It 
is a pivotal tool for categorizing pharmaceutical 
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products based on historical demand patterns, enabling 
tailored approaches for optimized forecasting and 
decision-making. Applying K-means clustering spans 
diverse domains, demonstrating its versatility and 
effectiveness. Ouedraogo [6] employs K-means to 
enhance machine learning model selection for 
interpretable breast cancer diagnosis, achieving high 
performance and interpretability. Palupi and 
Fakhruzzaman [7] utilizes a hybrid algorithm 
combining swarm intelligence and K-means to segment 
pharmacy retailers, informing tailored marketing 
strategies. Murry [8] employs K-means clustering to 
identify patient-centered care preferences, revealing 
distinct clusters with preferences for autonomy and 
collaboration in pharmacist care. Setiawan et al. [9] 
optimizes hospital clustering in Jakarta post-COVID-19 
using K-means, concluding its appropriateness for the 
dataset and highlighting its dependence on dataset 
characteristics. These studies underscore K-means 
clustering's adaptability and effectiveness in addressing 
various challenges across healthcare, marketing, and 
decision-making contexts. In the pharmaceutical field, 
Mousavi et al. [10] use principal component analysis 
and clustering analysis to understand the life cycle of 
pharmaceutical companies in Iran. Kochakkashani et al. 
[2] apply the K-means clustering algorithm to classify 
different types of medicines and vaccines in the supply 
chain, while Arief et al. [11] combine the clustering 
approach with the Pharma 4.0 concept to understand 
digital transformation in the Indonesian 
pharmaceutical industry. For the conditions of the 
COVID-19 pandemic, Devaraj et al. [12] and Luo et al. 
[13] used a time series method based on deep learning 
to predict the number of COVID-19 cases worldwide 
and analyze the development of the pandemic. Another 
method from Ilu and Prasad [14] used integrated 
statistical significance techniques and K-means 
clustering to improve the ARIMA prediction model in 
predicting COVID-19 cases. Time series and K-means 
clustering are techniques used to group similar data 
points. Time series clustering is specifically tailored to 
data organized in a temporal sequence, offering a 
specialized approach compared to the general 
applicability of K-means clustering. Adapting K-means 
for time series data may not capture temporal 
dependencies as effectively as dedicated time series 
clustering algorithms designed for sequential data. K-
means clustering offers several advantages for 
forecasting medical demand. Firstly, it efficiently 
partitions the data into distinct clusters based on 
demand patterns, allowing for a more granular 
understanding of consumer behavior. This method 
facilitates the identification of similar demand trends 
within clusters, aiding in predicting future demand for 
specific medicine. Additionally, K-means clustering is 
computationally efficient, enabling rapid analysis and 
adaptation to evolving demand scenarios. This 
approach enhances demand forecasting accuracy, 
contributing to more effective inventory management 
and resource allocation in the pharmaceutical industry.  

The Elbow Method is commonly used for cluster 
analysis to determine the optimal number of clusters. 
The main focus of this method is to look for points on 
the graph that show significant changes in the 
explanation of data variation when the number of 
clusters changes. The Elbow Method aims to find the 
number of clusters that can explain the data variation 
well without being too complex or simple. If the 
number of clusters is too small, the data may not be 
appropriately classified, while if the number of clusters 
is too large, the clustering results can lose meaning or 
be challenging to interpret. Therefore, the Elbow 
Method helps find the correct number of clusters for 
analysis. Another method, the Silhouette Method, 
measures how well each data point fits into a 
predetermined cluster and evaluates the distinctiveness 
of the cluster from others. The essence of the Silhouette 
Method lies in identifying the number of clusters that 
yield effective clustering results and maintain a clear 
separation between clusters without significant 
overlap. This method considers the clustering quality 
for each data point, not just the overall variation in the 
data. 

2.2.  Neural network 

Research by Hole et al. [15] states that the 
digitization process in the pharmaceutical industry 
includes the increased use of robotics, automation, and 
computerization to reduce costs, increase efficiency and 
productivity, and be flexible to change. Other 
researchers, such as Arden et al. [16], research the 
application of Industry 4.0 in pharmaceutical 
manufacturing and preparation for future smart 
factories. The application of these technologies has the 
potential to drastically increase the speed, efficiency, 
flexibility, and quality of medicine production. This 
research discusses the evolution of pharmaceutical 
manufacturing from manual processes with simple 
tools to large pharmaceutical industries with advanced 
technology. Kim et al. [17] face the challenge of 
developing a new digital value chain model with a 
product-life cycle approach in the biopharmaceutical 
industry. Advances in Pharma 4.0 technology in 
biopharmaceuticals complicate and slow the 
development of new medicines. This study proposes 
integrating the pharmaceutical value chain model with 
a product life cycle perspective to understand changes 
in medicine development and the application of digital 
transformation at different stages of medicine 
development. In the Saudi Arabian pharmaceutical 
manufacturing sector, Halwani et al. [18] explored 
nanotechnology as an opportunity for pharmaceutical 
companies to compete in the growing global medicine 
market by developing innovative medicines, especially 
nanotechnology. Another researcher, Duarte et al. [19], 
created decision-support tools for equitable and 
sustainable medicine distribution. Arief et al. [11] apply 
the Pharma 4.0 concept to the pharmaceutical industry 
in Indonesia. This research identifies eight core 
competencies needed by human resources in the 
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pharmaceutical industry to succeed in this era: critical 
thinking, digital skills, and data ethics. Regarding 
implementing digital Pharma 4.0, this study identified 
five main levels ranging from simplification to disease 
prediction. 

To prevent the spread of COVID-19 through the 
development of medicines and vaccines and the study 
of epidemic diffusion, Lee and Chang [20] proposed a 
Stochastic Susceptible-Infected-Quarantine-Removed 
(SIQR) model with two delays. The research 
complemented its theoretical findings with numerical 
simulations using the Gillespie algorithm. The study 
results indicate that the proposed SIQR model better 
explains the spread of the COVID-19 epidemic 
compared to the traditional Susceptible-Exposed-
Infected-Released (SEIR) model regarding MAPE, 
RMSE, and MAD. This article contributes significantly 
to the mathematical understanding of infectious disease 
spread and is valuable for health scientists and 
epidemiological researchers in planning disease control 
strategies. Furthermore, as heart disease prediction 
becomes increasingly important due to a rising number 
of sudden deaths caused by heart disease, 
Chandrasekar [21] employs artificial neural networks, 
specifically the Convolutional Neural Network (CNN) 
VGG-19 model. This research leverages machine 
learning, deep learning, and data mining technologies. 
VGG-19 CNN and Deep Neural Network (DNN) 
architecture successfully classify histopathological 
images for heart disease prediction. Hoffmann and 
Rutschmann [22] specifically link big data analysis with 
demand forecasting in the supply chain. This research 
shows that companies can use big data analysis in 
operational, tactical, or strategic demand planning, 
provide better results in forecasting accuracy, and 
consider many parameters directly affecting customer 
demand. By incorporating Big Data analytics, 
companies can significantly enhance forecasting 
accuracy by taking into account numerous parameters 
directly influencing customer demand. This 
comprehensive approach allows for a more nuanced 
understanding and effective response to the dynamic 
nature of market demands at different planning levels. 

Artificial Neural Network (ANN) is used in 
forecasting to increase accuracy. This method can 
overcome nonlinear relationships between various 
parameters, not only limited to statistical and numerical 
data in the past. ANN is an information processing 
system that resembles a biological neural network 
developed as a mathematical model of human cognition 
or neurobiology. ANN represents system dynamics as 
a mathematical model, determining the accuracy of 
network architecture, network learning techniques, and 
network models. Understanding system behavior 
patterns allows the application of these results to 
predict future behavior. One of the ANN variants 
specifically designed to deal with sequential or time 
series data is the Recurrent Neural Network (RNN). 
RNNs can understand temporal relationships in data 
because of the repeated connections that allow 
information to be stored and passed between time steps. 

However, traditional RNNs have constraints such as 
vanishing gradient and burst problems, which limit 
their ability to capture long-term dependencies. To 
address this, more sophisticated RNN variants such as 
Long Short-Term Memory (LSTM) and Gated Recurrent 
Units (GRU) have emerged, incorporating specific 
control mechanisms to manage the flow of information 
over time. 

2.3. Bi-LSTM 

LSTM is a model that can consider past information 
over time, enabling it to recognize patterns, trends, and 
dependencies in time series data. These advantages 
make it a good choice for data modeling complex time 
frame structures. With a "cell state" as an internal 
memory unit, the LSTM can store and access long-term 
information. Control gates control how much 
information is remembered or forgotten in the forecast. 
The strengths of LSTM in forecasting include the ability 
to handle remote dependencies in data, overcome the 
vanishing gradient problem common to traditional 
RNNs, and provide more accurate predictions for 
complex time sequences. LSTM forecasts various time 
series variables, including product sales, financial data, 
and energy use. With its ability to model complex time 
frame structures, LSTM provides more reliable 
predictions and supports decision-making regarding 
demand planning and management. However, 
applying LSTM in forecasting requires understanding 
model configuration, proper data processing, and 
validating the results obtained. In practice, practitioners 
must adapt the selection of forecasting models and 
methods to the data context and specific forecasting 
objectives. Research conducted by Lin et al. [23] and 
Shubo et al. [24] discusses the use of deep learning 
models based on LSTM and Mutual Information (MI) 
for short-term electricity load predictions. 

Bidirectional LSTM (Bi-LSTM) is a Recurrent Neural 
Network (RNN) type that effectively understands and 
predicts patterns in time series data. The advantage of 
the Bi-LSTM method is its ability to "look" backward 
and forwards from a data sequence to better 
accommodate the previous context and approach 
forecasts. The application of Bi-LSTM has been 
successful in various studies related to forecasting. 
Zhou et al. [25] developed a COVID-19 prediction 
model using an LSTM-based deep-learning approach. 
The application of the LSTM was also successfully 
carried out in the research by Khalil et al. [26], where a 
combined model of Convolutional Neural Networks 
and LSTM is used to forecast public transport demand. 
The Bi-LSTM method has also provided promising 
results in other studies. Rayan and Alaerjan [27] applied 
Bi-LSTM in processing X-ray images to identify 
COVID-19 infection. Sirisha et al. [28] used the Deep 
Stacked Bi-LSTM model to predict oil production. Arief 
et al. [11] used the Deep Bi-LSTM model to predict 
multivariate time series data features using sensors. 
Unlike the traditional Feed-Forward Neural Network, 
the Bi-LSTM Neural Network has internal nodes at each 
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layer that are not connected. In the hidden layer 
connection, a directional loop allows the recall and 
storage of previous information in memory units, 
thereby enhancing the association between data 
segments in different time series. The neural network 
combines the previous and current input to determine 
its output. Another advantage of the Bi-LSTM Neural 
Network is its ability to consider the forward and 
backward correlations of a given time series data that 
will improve its performance. 

Bi-LSTM has two main components, namely 
forward LSTM and backward LSTM. In the forward 
section, the system processes data from the past to the 
future, while in the backward section, it processes data 
from the future to the past. Integrating information 
from both parts of the LSTM enhances the accuracy and 
reliability of predictions. Each LSTM has internal 
memory cells, which allow them to store and 
manipulate information over a more expansive period. 
LSTM cells can add, remove, or update information 
based on new input and knowledge drawn from the 
past. Bi-LSTM is very effective in the case of sequential 
or time series data, such as in language prediction, 
classification, and modeling. The results from the 
forward and backward LSTMs are combined to make 
predictions on the next time step. Utilization of time 
series data and its feedback provides additional context 
that helps the model understand the problem better and 
faster. Pustohkhina et al. [29] used a hyperparameter 
search convolutional neural network with Bi-LSTM 
(HPS-CBL) to use big data to detect intrusion. 
Experimental results suggest that the HPS-CBL model 
performs better than the compared methods, with 
maximum levels of precision and accuracy. Using the 
Information Processing View theoretical framework, 
Ziaee et al. [30] use Big Data Analytics in the 
Pharmaceutical Supply Chain in Australia. Metlek [31] 
developed and tested a new deep learning model to 
predict aircraft fuel consumption using Convolutional 
Neural Network (CNN) and Bi-LSTM. The study 
compares the developed hybrid model with existing 
deep learning models, specifically LSTM and Bi-LSTM. 
Kota and Munisamy [32] use Neural Network-based 
Deep Learning for sentiment analysis by combining 
Convolutional Neural Network, Bi-LSTM, and 
attention mechanisms. CNN helps reduce complexity, 
and Bi-LSTM helps process long input text sequences. 

2.4. Method 

This study uses the K-means clustering method as 
the first stage to classify medicine sales data based on 
historical sales patterns. The research procedure began 
with collecting sales data from a pharmacy company in 
Denpasar for 17 medicines in antibiotics, antifungals, 
and antivirals for 60 months from January 2017 to 
December 2021. This data includes sales information 
per month for each medicine. After the data is collected, 
the second step involves preprocessing the data to 
remove missing values or significant values that may 
affect the clustering results. The third step is identifying 

and resolving missing or invalid values in the data. 
Finally, if necessary, outlier detection and handling are 
carried out. This step will eliminate potential 
interference with forecasting results. The following 
process is to apply the K-means clustering method to 
group these medicines based on their historical sales 
patterns. At this stage, leverage clustering methods like 
k-means, Hierarchical clustering, or DBSCAN. The 
primary objective is to identify groups of medicines 
exhibiting similar behavior. In K-means clustering, 
managing the number of clusters is crucial, as this 
parameter determines how the data will be partitioned 
into distinct groups. The number of clusters must be 
determined based on the nature of the data and the 
complexity of the problems encountered. 

Classifying products into specific groups, the team 
forms a demand forecasting model for each product 
group utilizing the Bi-LSTM method. The subsequent 
step entails training these models with 54 months of 
sales data for each product group. This training process 
is tailored to optimize the models' performance, aiming 
for accurate forecasts. To ensure accuracy, the 
forecasting model then undergoes evaluation and 
validation using test data, which comprises six months 
of sales data. When using Bi-LSTM, parameters such as 
the number of layers, neurons, and the activation 
function must be considered. The number of layers in 
an LSTM network controls the complexity of the model. 
However, adding fewer layers can result in overfitting. 
The number of neurons in each layer also affects the 
model's ability to capture patterns in the data. This 
model is updated through a training process with 
historical data to optimize its performance. The 
activation function in each LSTM layer regulates how 
information flows in the network. A structured 
experimental design and accurate parameter 
determination are required to compare the K-means 
clustering and Bi-LSTM methods in forecasting 
medicine demand. To evaluate performance, we test 
both methods using test data and assess forecasting 
accuracy by comparing the results with actual data. If 
deviations are present, we analyze factors affecting 
forecasting performance and implement corrective 
measures, such as model adjustments or parameter 
changes. In this comparison, we can refer to evaluation 
metrics like Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), or Mean Absolute Percentage 
Error (MAPE). 

Finally, we implemented this model to ensure the 
maintenance of forecast quality over time. The model is 
updated regularly according to changes in data and 
operational conditions. This approach ensures that 
forecasting remains accurate and relevant in dealing 
with changes in the pharmaceutical industry. Thus, 
integrating K-means clustering and Bi-LSTM methods 
provides a solid foundation for better and more 
effective demand forecasting in this sector. The 
presentation of demand forecasting results will display 
a visualization of medicine demand forecasting. Time 
series charts allow the identification of trends, seasonal 
patterns, and fluctuations in data from time to time. At 
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the end, we present conclusions and recommendations 
based on forecasting results. These recommendations 
cover determining which method is more appropriate 
to apply in the context of a pharmaceutical company 
and the rationale behind it. The data sources and 
references related to the implemented K-means 
clustering and Bi-LSTM methods need to be mentioned 
to maintain the integrity of the information. Figure 1 
illustrates the K-Means and Bi-LSTM research model. 
The process begins with data preprocessing, followed 
by K-Means clustering, which segments the time series 
data into clusters based on similar patterns. The 
clustering results are then used to configure the training 
process, which includes initialization, parameter setup, 
and layer adjustment for the Bi-LSTM model. The 
model undergoes iteration and testing to minimize 
errors, with further parameter optimization if needed. 
Once it achieved error minimization, the model was 
moved to the testing configuration and terminated it 
based on the number of epochs. We validate the 
resulting forecasts using MAE and MSE metrics and 
finally produce the visualization of prediction results to 
illustrate the model's performance. 
 

 
Figure 1. K-Means and Bi-LSTM Model 

3. Results and discussions 

We will use medicine sales data for analysis, 
recorded on a monthly time series basis. This data 

represents the total sales for each medicine, excluding 
the number of returns. The data used is medicine sales 
data for the category of antibiotics, antifungals, and 
antivirals for 60 months, with data sharing in the form 
of 54 months of training data and six months of testing 
data. The total number of medicines marketed varies 
year to year because several times there were 
discontinues for medicines with low sales levels and the 
addition of new medicines. In the first year, there were 
162 medicines; the following year, 179, 181, 178 and 161 
medicines. During this preprocessing stage, we reduced 
the total number of medicines marketed in the first year 
to 106. The medicines selected to be the object of 
research are for the categories of antibiotics, antifungals, 
and antivirals, which have historical data of 60 months. 
This range was chosen to obtain sales data patterns 
before the COVID-19 pandemic, during the COVID-19 
pandemic, and during the new standard transition 
period. The forecasting results aim to predict the 
current sales pattern of each medicine, considering that 
medicines encompass items whose sales were affected 
by the pandemic. The medicine code consists of 5 digits, 
with the first two digits representing information on the 
dosage form of the medicine, for example, in the form 
of an injection, tablet, syrup, and so on, and the other 
three digits being the code for each medicine. 

The method used in this study is time K-means 
clustering with Python. After obtaining results from the 
clusters and forming several groups, we will create an 
appropriate model to predict the members of each 
cluster. In the data preprocessing stage, we reduced the 
number of medicine variants in the antibiotic, 
antifungal, and antiviral categories 16 by excluding 
medicines without complete historical data for 60 
months, from January 2017 to December 2021. The data 
processing for K-means clustering utilized training 
data, consisting of sales transaction data for 54 months 
from 16 medicine variants in the antibiotics, antifungal, 
and antiviral categories, which will serve as input for 
the forecasting process. The first stage in conducting K-
means clustering analysis is to perform data 
overviewing and then determine the optimal number of 
clusters with the Elbow Method in Figure 2, Silhouette 
Method in Figure 3, and Gap Statistics in Figure 4. 
 

 
 

Figure 2. Elbow Method 
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Figure 3. Silhouette Method 
 

 
 

Figure 4. Gap Statistical Method 
 

In the Elbow Method, the optimum number of 
clusters k suitable for this research dataset is 3. In the 
Silhouette Method, the optimal number of clusters is k. 
The recommended number is 3 clusters. The optimum 
number of clusters k produced in the Gap Statistics 
method is 2. However, unfortunately, the optimum 
number of cluster k produced by each method is 
different and does not provide a definite output, so we 
decided to use an additional method, NBClust. NBClust 
is a library that contains 30 algorithms for determining 
the number of clusters. cluster-k to make it easier for 
users to determine the correct number of cluster-k. The 
reason for adding this method is that NBClust is a 
library that can summarize all the results of 
determining the number of cluster-k from 30 
algorithms. The NBClust Method analysis reveals that 
most algorithms, which aim to determine the optimal 
number of clusters denoted as 'k,' converge on the 
conclusion that the ideal number of clusters is 3. We 
grouped the medicines into three clusters with the 
distribution of cluster members: 101 medicines in the 
first cluster, four medicines in the second cluster, and 1 
medicine in the third cluster.  

Cluster 1 has too many members and needs to match 
with other clusters. Fahim et al. (2008) assert in their 
journal that the quality of clusters diminishes when the 
dataset exhibits a spherical shape with notable 
variations in size. So, we will split Cluster 1 back into 
Cluster 0 and Cluster 1. The medicines in cluster 1 have 
an average monthly sale of 116.79 medicines. Many 
medicines have monthly sales figures lower than 116.79. 
Consequently, we will further divide the cluster into 
cluster 0, including medicines with an average monthly 
sales figure of less than 116.79, and the remaining 
medicines will form cluster 1. The medicine distribution 

shows that 60.8% of medicines fall into Cluster 0, 28.5% 
fall into Cluster 1, 0.6% fall into Cluster 2, 1.9% fall into 
Cluster 3, and 8.4% fall into Cluster 4. 

The second stage is to forecast the data using an 
Artificial Neural Network algorithm of the Bi-LSTM 
type with Python. The train data used is medicine 
transaction sales data for 54 months since January 2017. 
The test data covered the last six months, from July 2021 
to December 2021. A forecasting system model uses the 
average data for each medicine in the cluster. The 
respective Bi-LSTM models for each cluster and the 
output from the resulting data processing are as 
follows: 

In cluster 0, the Bi-LSTM model used is Bi-LSTM 
with an input layer with two neurons, the first hidden 
layer with 32 neurons, the second with 32 neurons, and 
the third with 16 neurons with one output layer. The 
number of epochs (training) used was 220 times. After 
completing the training process, Figure 5 and Figure 6 
display visualizations of the MAE and MSE from the 
model. The validation loss and training loss curves, 
derived from the MAE and MSE accuracy methods, 
converge at the minimum error value, ensuring the 
model's suitability for the applied data. Figure 7 
provides a visualization of the forecast outcomes for 
cluster 0, marking the completion of the forecasting 
system model for this cluster. 
 

 
 

Figure 5.  Cluster 0 MSE plot 
 

 
 

Figure 6. MAE Cluster 0 plot 
 

In cluster 1, the Bi-LSTM model features input layers 

with ten neurons, a first hidden layer consisting of 128 

neurons, a second hidden layer with 32 neurons, and an 

output layer. The training process involves 136 epochs. 

For cluster 2, the Bi-LSTM model is characterized by an 

input layer comprising two neurons, the first hidden 
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layer with 32 neurons, the second with eight neurons, 

the third with four neurons, and an output layer, with 

training conducted over 20 epochs. In cluster 3, the Bi-

LSTM model utilizes an input layer with two neurons, 

a hidden layer of 128 neurons, and an output layer with 

one neuron, undergoing training for 150 epochs. All the 

forecast validation results showed that every cluster's 

MAE and MSE values range from 0 to ∞ with 

recommendations for good MAE and MSE values close 

to 0. Cluster Analysis 0 reveals four distinct clusters 

based on sales levels. In Cluster 0, comprising 70 

medicines with the lowest sales, the average monthly 

sales stand at 41,645 medicines—the Bi-LSTM data 

processing results in an MAE of 0.0835 and MSE of 

0.0165 during the forecasting validation. Moving to 

Cluster 1, which includes 31 medicines with sales 

surpassing Cluster 0 but remaining relatively low at an 

average of 286.5 medicines per month, the Bi-LSTM 

forecasting validation yields an MAE of 0.1299 and MSE 

of 0.0309. Cluster 2, representing four medicines with 

the highest sales across clusters, boasts an average 

monthly sales figure of 2027 medicines, resulting in a Bi-

LSTM forecasting validation with an MAE of 0.0899 and 

MSE of 0.0380. Lastly, Cluster 3, housing a single 

medicine with a moderately high sales level akin to 

Cluster 2 (averaging 806.2 medicines monthly), reports 

a Bi-LSTM forecasting validation with an MAE of 0.0239 

and MSE of 0.0094.  

The advantage of the Bi-LSTM method is that it 

helps understand sequential patterns in time series data 

well. This ability allows the model to capture complex 

relationships between past and future data, which is 

relevant in predicting the demand for medicine that 

tends to follow specific sequential patterns. This 

method can also handle time series data with varying 

sequential lengths to allow for more flexible and 

efficient forecasting without the rigid standardization 

of time lengths. Bi-LSTM can also handle multivariable 

data input well. Forecasting demand for medicine 

allows the model to consider interactions between 

various factors affecting demand, such as seasonality, 

promotions, and special events. The disadvantage is 

that this deep-learning model requires a lot of data to 

train correctly. If medicine demand data is limited or 

sparse, this model may not provide optimal results. In 

addition, training and evaluating the Bi-LSTM model 

requires high computational processing, especially if 

the time series data is extensive. This extension can lead 

to long training times and requires powerful 

computational resources. Bi-LSTM also has high 

complexity, which can lead to the risk of overfitting the 

training data if not managed properly. Overfitting can 

cause the model to be unusual and unreliable in 

forecasting new data. 
The forecasting landscape has witnessed significant 

advancements in integrating machine learning models, 

offering enhanced accuracy and efficiency. This paper 
explores the strengths of various machine learning 
models in forecasting and provides a concise overview 
of four prominent models: Random Forest, Gradient 
Boosting, Support Vector Machines (SVM), and Neural 
Networks. Random Forest is an ensemble learning 
technique that constructs numerous decision trees 
during training and averages their predictions, making 
it robust for large datasets with high dimensionality 
and minimizing overfitting. Gradient Boosting, another 
ensemble method, builds trees sequentially to address 
residual errors, excels in capturing complex data 
relationships, demonstrates resilience to outliers, and 
offers high predictive accuracy. Support Vector 
Machines (SVM) serve as powerful models for 
classification and regression tasks, operating by 
mapping data into a higher-dimensional space and 
finding optimal hyperplanes to maximize class margin. 
SVMs are effective in high-dimensional spaces and 
versatile across various data types. Neural Networks, 
especially deep learning models, have gained 
popularity for automatically learning complex patterns. 
Comprising interconnected layers of artificial neurons, 
Neural Networks excel in capturing intricate 
relationships, particularly in tasks with substantial 
data, making them effective for time series forecasting. 
 

 
 
Figure 7. Visualization of Cluster 0 Forecasting Results 

 
While these models have demonstrated remarkable 

forecasting capabilities, this paper also delves into the 
unique features of Bi-LSTM networks. Bi-LSTM, a 
recurrent neural network (RNN), handles sequential 
and time-dependent data by maintaining long-term 
dependencies. It introduces bidirectionality, allowing 
the model to capture information from both past and 
future timestamps, enhancing its ability to understand 
complex temporal patterns. In comparing these models, 
the paper explores their commonalities and differences, 
emphasizing how Bi-LSTM, with its specialized 
architecture, addresses challenges inherent in time 
series forecasting. Through a comprehensive 
evaluation, the paper aims to provide insights into the 
optimal selection of machine learning models based on 
specific forecasting requirements and dataset 
characteristics. 

We applied the forecasting model to each medicine 
in cluster 0. One of the medicines that is a member of 
cluster 0 is a medicine with code 04040. Figure 8 is a 
forecasting plot produced using the forecasting model 
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formed for cluster 0. The Bi-LSTM models employed for 
forecasting in different clusters exhibit specific 
configurations. 
 

 
Figure 8. Visualization of Medicine 04040 Forecasting 

Results 
 

The comparison of Mean Squared Error (MSE) and 

Mean Absolute Error (MAE) across different forecasting 

models reveals distinct performance metrics for each 

method for medicine 04040. Among the models 

evaluated using Python, Bi-LSTM stands out with 

remarkably superior results compared to other 

techniques. Regarding MSE, Bi-LSTM achieved a 

significantly lower value of 2.733583, indicating its 

ability to minimize the squared differences between 

predicted and actual values. This result outperformed 

other models such as Random Forest (5.291067), 

Gradient Boosting (8.523067), SVM (9.223233), and 

Neural Networks (68.677367). The lower MSE for Bi-

LSTM suggests a higher accuracy in capturing the 

variability within the data and generating more precise 

forecasts. Similarly, when considering MAE, which 

represents the absolute differences between predicted 

and actual values, Bi-LSTM demonstrated exceptional 

accuracy with a value of 1.495000. This MAE value is 

notably lower than the MAE values of other models, 

including Random Forest (2.080000), Gradient Boosting 

(2.613333), SVM (2.513333), and Neural Networks 

(8.060000). The smaller MAE for Bi-LSTM underscores 

its effectiveness in providing more reliable point 

forecasts. 

The superior forecasting performance of Bi-LSTM 

can be attributed to its unique architecture, allowing it 

to capture complex temporal dependencies and 

patterns within the data. The model's ability to 

remember and learn from sequential information, 

combined with its bidirectional processing, contributes 

to enhanced predictive capabilities. While other models 

may struggle to capture intricate relationships, Bi-

LSTM excels in handling sequential data, making it a 

favorable choice for time-series forecasting tasks. The 

observed differences in MSE and MAE highlight the 

importance of choosing appropriate models based on 

the dataset's specific characteristics and the forecasting 

problem's nature. 

4. Conclusions 

In this study, four Bi-LSTM models were developed 
for each cluster, each with distinct architectures tailored 
to the characteristics of the corresponding dataset. The 
resulting MAE and MSE visualizations indicated 
successful model training, with validation and training 
loss curves reaching their lowest points. The forecasting 
system model for Cluster 0 was then applied to 
individual medicines within the cluster, such as the 
medicinal with code 04040. The results show the 
strengths of Bi-LSTM among various machine learning 
models in forecasting of four models: Random Forest, 
Gradient Boosting, Support Vector Machines (SVM), 
and Neural Networks.  

Pharmaceutical companies can use K-means 
clustering and Bi-LSTM methods to improve demand 
forecasting accuracy for their medicine. Higher 
forecasting accuracy will help companies plan and 
manage inventory more efficiently, avoid shortages or 
excess inventories, and increase customer satisfaction. 
Various factors, including market trends, seasons, 
marketing campaigns, and other external factors, often 
influence the demand for medicine in the 
pharmaceutical industry. Companies can be more 
responsive to changes in demand and anticipate 
demand fluctuations that may occur. Pharmaceutical 
companies can optimize medicine production and 
distribution processes with more accurate forecasting. 
This optimization will assist in more efficient 
production arrangements, avoid wastage, and reduce 
operational costs. 

To enhance the quality of medicine demand 
forecasting, researchers can explore several potential 
future topics for further development. These topics 
include paying attention to the characteristics of 
medicine, such as generic and innovative medicines. 
Additionally, research can focus on understanding 
customer behavior through customer behavior analysis 
and developing predictive analysis techniques to 
identify factors influencing purchasing decisions, 
considering aspects like promotion, season, and 
medical developments. It is necessary to combine 
forecasting methods such as K-means clustering Bi-
LSTM, and other methods such as AutoRegressive 
Integrated Moving Average (ARIMA) and Exponential 
Smoothing to provide better results. The continued 
development of Artificial Intelligence (AI) and machine 
learning technologies opens up new opportunities for 
developing more sophisticated forecasting models. 
Deep learning and reinforcement learning techniques 
can improve a model's ability to identify complex 
patterns and predict demand more accurately. 
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