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Order picking is a costly activity in warehouse operations, accounting for up to 65% 
of total warehouse operational costs. This study aims to improve the efficiency and 
productivity of the order picking process in a warehouse by applying two heuristic 
methods, namely the S-Shape and aisle-by-aisle approaches. Data were processed 
using InterActive Freight & Warehouse software, which is designed for warehousing 
and logistics management with interactive features that assist in optimizing order 
picking routes. The software employs heuristic methods, such as the S-Shape and 
aisle-by-aisle strategies, to reduce the distance workers travel to pick goods. The 
results show that the S-Shape method significantly reduces workers' travel distance 
compared to other methods. Thus, the application of heuristic methods in optimizing 
order picking routes proves effective in enhancing warehouse operational efficiency. 
The S-Shape method yields an average total distance traveled of 678.729 meters, while 
the aisle-by-aisle method results in 684.04 meters. Additionally, the S-Shape method 
increases line order productivity from 30 lines of orders per packing list to 84 lines of 
orders per packing list, with a cycle time of 45.25 seconds to complete the picking 
process for one line of orders. 
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1. Introduction 

Warehouses play an important role in the supply 
chain as storage and distribution centers for goods 
before they are sent to customers. The main activities in 
warehouse operations include receiving goods 
(receiving), storage (put-away and storage), order 
picking, packaging (packing and sorting), and delivery 
(dispatch and shipping) [1]. Among these activities, 
order picking is the most expensive process, 
contributing up to 55% of total warehouse operational 
costs [2], [3]. The basic processes in a warehouse consist 
of receiving, put-away, internal replenishment, order 
picking, accumulating and sorting, packing, cross-
docking, dispatch, and shipping. Receiving and storing 
can be categorized as inbound processes, while the 
others are considered outbound processes. In addition 
to these processes, there are also value-added services 
that are not mandatory but depend on the type of 
warehouse and the variety of services provided. Order 
picking routes are critical in warehouse operations, 
involving the efficient retrieval of products from 
storage locations. Optimizing these routes reduces 
labor costs and increases productivity, making them 
essential for effective supply chain management in 
picker-to-parts systems [4]. 

Order picking also significantly impacts customer 
service levels because it directly affects the speed and 
accuracy of order fulfillment [5]. The efficiency of order 
picking largely depends on the routing method used by 
workers to retrieve goods from storage locations and 
deliver them to the packaging area. The shorter the 
distance traveled, the lower the labor costs and the 
faster the order fulfillment process becomes. Therefore, 
optimizing picking routes is a key focus in enhancing 
warehouse productivity [6]. The challenges of today's 
warehouses include increasing efficiency and 
productivity while reducing overtime costs. Warehouse 
management generally oversees the implementation of 
five key activities: receiving, put-away, storage, order 
picking, and shipping [1]. Order picking stands out as 
the most expensive activity in warehousing, accounting 
for up to 55% of total operating costs, as shown in Table 
1, making it a top priority for boosting productivity [1]. 
It can even reach 55% of total warehouse operating costs 
[7]. Order picking is also crucial because it directly 
affects customer service levels. This connection 
depends heavily on the optimization and accuracy of 
the order picking process. Optimization reflects how 
quickly and precisely an order can be retrieved [2], as 
well as how fast it becomes available for delivery to the 
customer. 

Available at e-Journal Universitas Sultan Ageng Tirtayasa  

journal homepage: http://jurnal.untirta.ac.id/index.php/jiss   

https://crossmark.crossref.org/dialog/?doi=10.62870/jiss.v10i2.28595&domain=pdf


 

 

362 
 

Purwanto and Oktarina  (2024), Journal Industrial Servicess, vol. 10, no. 2, pp. 361–369, October 2024 

Table 1. 

Distribution of order picking time 

Activity Percentage (%) 

Traveling 55 
Searching 15 
Extracting 10 
Paperwork and other activities 20 

 
To improve order picking efficiency, various 

strategies have been developed, including heuristic 
methods such as S-Shape, aisle-by-aisle, return, largest 
gap, and combined [2]. Several studies have shown that 
these heuristic methods can significantly reduce 
workers' travel distance, thereby cutting picking time 
and boosting system throughput [7]. 

In order picking systems, travel time increases along 
with travel distance, so travel distance is often seen as 
the primary focus when designing and optimizing 
warehouses [2]. Heuristic routing methods are 
commonly used to minimize both the distance and 
travel time of picking routes. 

Order picking route optimization, particularly with 
heuristic methods like the S-Shape and aisle-by-aisle 
strategies, plays a vital role in enhancing warehouse 
efficiency. The S-Shape method, as noted by [8], reduces 
travel distance by implementing systematic U-turns at 
the end of the last aisle, minimizing unnecessary 
movements within the warehouse. Similarly, a study by 
[9] pointed out that order picking efficiency is often 
affected by deviations from planned routes due to 
human behavioral factors. 

Routing strategies directly influence distance and 
travel time. A well-designed routing strategy can 
significantly cut both. Improving the productivity of the 
order picking process involves selecting the right 
heuristic routing method to achieve the shortest time 
and distance. These strategies guide the picker by 
suggesting the route and the sequence for picking 
products from the pickup list. The goal of routing in a 
warehouse is to find the shortest path [10]. The best-
known routing strategies include S-Shape, return, mid-
point, largest gap, combined, optimal, aisle-by-aisle, 
and composite [2]. These heuristic routing methods 
shorten picking distances and can increase order 
picking productivity [10]. 

Optimizing order picking routes using heuristic 
methods, especially A-Shape and aisle-by-aisle 
strategies, is critical to boosting efficiency in warehouse 
operations. These methods focus on minimizing travel 
distance and time while accounting for factors like aisle 
width and congestion. The following sections outline 
the key aspects of these routing approaches. A-Shape 
routing uses a structured approach to navigate through 
aisles, optimizing paths by reducing unnecessary 
backtracking. It’s particularly effective in parallel aisle 
systems, achieving an optimal gap of 1.38% to 9.21% in 
travel distance [11]. Aisle-by-aisle routing, on the other 
hand, involves systematically retrieving items from one 
aisle before moving to the next. This strategy can be 

modeled using mixed-integer programming to consider 
aisle configurations and access modes [12]. 

Furthermore, a study by [13] highlighted the 
ergonomic and economic benefits of a hybrid order 
picking system that combines human labor with 
automated solutions. They found that integrating 
Automated Guided Vehicles (AGVs) with heuristic 
routing methods strikes an optimal balance between 
human effort and automation, reducing operator 

fatigue and improving picking accuracy. 
Most prior research discusses heuristic methods for 

order picking theoretically or through simulations. This 
research goes a step further by comparing two heuristic 
methods directly in real-world conditions, using 
interactive software. The study compares the distance 
traveled by workers in the current state (without a 
specific method) with the optimization results obtained 
through heuristic methods. The analysis process is 
conducted using interactive software that enables real-
time calculation and visualization of routes. This 
research not only focuses on comparing travel distances 
but also measures the impact of the proposed method 
on order picking productivity, specifically the increase 
in the number of order lines that can be processed per 
working hour. It is hoped that the results of this 
research can provide practical recommendations for 
warehouse managers to improve operational efficiency 
by selecting the optimal order picking method. 

2. Literature review 

Order picking is one of the most complex and costly 
activities in warehouse operations, accounting for up to 
55% of total operational costs [2]. Its efficiency 
significantly impacts warehouse productivity, order 
processing time, and customer satisfaction [1]. To 
optimize this process, researchers have developed 
various approaches aimed at minimizing workers' 
travel distance and time during order picking [7]. 

Order picking improvements can be viewed from 
four main perspectives: automation (particularly stock-
to-picker systems), storage assignment policies, order 
batching, and order picking sequencing. By reviewing 
these areas, we aim to identify the most prevalent 
approaches to enhancing order picking efficiency [14]. 

A study focusing on Wholesale Fresh Produce 
Traders in China utilized the Genetic Algorithm and 
Heuristic Method to address order picking challenges. 
This research explored an extended version of joint 
order batching and scheduling optimization for manual 
vegetable order picking and packing lines, 
incorporating the effect of worker fatigue [15]. A 
heuristic approach was developed to minimize total 
completion time, and its performance was evaluated 
using numerical instances derived from real-world 

warehouse operations of a partnering B2C grocery 
company [15]. 

Another heuristic approach employed association 
rule mining (ARM) to group products into families 
based on similarities between stock-keeping units 
(SKUs) [16]. SKUs with higher similarities were placed 
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closer to each other. This method was tested using data 
from a real distribution center in the food retail 
industry, demonstrating that data mining-driven 
layouts could significantly reduce travel distances 
during order picking [16]. 

In the context of omni-channel retail stores, the 
integrated Order Picking and Heterogeneous Picker 
Scheduling Problem (OPPSP-Het) was addressed 
through a mixed-integer linear optimization model. The 

goal was to minimize the total tardiness of customer 
orders [17]. 

For optimizing storage location assignments in a 
manufacturing firm’s warehouse, a mathematical 
model was introduced to solve the nonlinear mixed 
integer optimization problem (NLMIP), specifically the 
Storage Location Assignment Problem (SLAP). 
Historical data from the warehouse management 
system (WMS) was used, with clustering and ABC 
analysis applied based on item picking frequency and 
co-picking occurrences. A greedy heuristic was also 
developed to solve the SLAP [18]. 

Routing strategies such as the S-shape/traversal 
strategy and the Return strategy were implemented in 
a study using a random storage method [19]. The 
average travel distance was calculated by considering 
components such as the distance from the depot to the 
first pick aisle, travel through sub-aisles, corrections for 
turns, cross-aisle travel, and the return distance to the 
depot. These components were used to determine the 
total average travel distance [19]. 

In a specific case involving a warehouse with a two-
cross-aisle layout, five heuristic algorithms were 
developed to determine optimal pick-up routes [20]. 
The travel distances generated by each algorithm were 
compared, leading to improved warehouse efficiency 
by reducing pick-up travel distances [20]. 

The aisle-by-aisle method, which involves 
systematically picking items from each aisle, has proven 
effective in high-traffic warehouses with bottlenecks. 
This method ensures all items are picked without 
omissions, particularly beneficial for large order sizes 
[21]. It is especially useful in multi-aisle systems where 
routing complexity increases, enabling better system 
utilization and throughput by minimizing cycle times 
[22]. 

In a finished goods warehouse, long travel and 
search times during picking activities were identified as 
significant issues. To address this, a storage allocation 

strategy was proposed, utilizing an interaction 
frequency heuristic. This method calculated the 
interaction frequency and popularity of SKU pairs 
based on order lists, aiming to minimize picking time 
[23]. 

A classification of order picking systems by [24] 
highlighted that warehouses integrating heuristic 
routing policies with automation tend to achieve higher 
accuracy and lower operational costs. This finding 

aligns with our study, where heuristic methods 
demonstrated improvements in order picking speed 
and cost efficiency. 

While heuristic methods offer substantial benefits, 
their effectiveness depends on specific warehouse 
configurations and operational constraints. Factors 
such as aisle traffic, storage assignments, and order 
characteristics can influence their performance [22], 
[25]. Additionally, integrating these methods with 
advanced technologies and mathematical models can 
further enhance efficiency, as evidenced by various 
studies proposing new models for order picking 
optimization [26]. By applying heuristic methods 
through interactive warehouse programs, it was found 
that heuristic routing can significantly shorten picking 
distances, thereby increasing order picking 
productivity [27]. Related research findings are 
summarized in Table 2. 

3. Methods 

The research flow begins with data collection, 
followed by initial data processing, which involves 
creating a layout of the current warehouse using 
interactive warehouse software. InterActive Freight & 
Warehouse is a software designed for warehousing and 
logistics management, offering interactive features that 
optimize order-picking routes using heuristic methods 
such as A-Shape and aisle-by-aisle. These methods help 
reduce the distance workers travel to pick goods. 
Developed by a warehousing company in Toronto, 
Ontario, it compares workers' travel distances under 
current conditions (where no method is applied, and 
picking is done based on individual preferences) with 
the distances generated by the proposed heuristic 
methods.  The software can be accessed at 
https://www.roodbergen.com/warehouse/frames.ht
m?demo. All data processing in this study will also be 
carried out using this software. 

 
Table 2. 
Summary of related articles 

Author Method Notes 

[14] Various methods to improve order picking activities Review all methods to improve order picking activities 
[15] Order Batching Algorithm upon Similarity (OBAS) Scheduling for manual vegetable order picking and packing lines. 
[16] ARM -based SLAP Positioning items to minimize order picking time in a distribution center. 
[17] Mathematical and Hybrid Heuristic Design Optimization in order picking in an omni-channel retail environment 
[18] ABC analysis and K-means Optimize storage location assignment decisions in a warehouse 
[19] S Shape and Return Reduce travel distance by comparing 2 methods: S Shape and Return 
[20] S Shape, Return, midpoint, Largest Gap, Aisle by Aisle Improve warehouse efficiency by decreasing the pick-up travel distance 
[27] Interaction Frequency Heuristic Decrease travel time and picking time in finish goods warehouse 
[10] S Shape, Largest Gap, Aisle by Aisle, Combine Improve the productivity of order picking by shortening the distance 

https://www.roodbergen.com/warehouse/frames.htm?demo
https://www.roodbergen.com/warehouse/frames.htm?demo
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Figure 1. Warehouse layout 

 
Table 3. 
Shelf distance (meters) 

Code Distance  Code Distance  Code Distance  Code Distance  Code Distance  Code Distance  Code Distance  

RK1 2.2 RK9 2.2 RK17 2.2 RK25 2.2 RK33 2.2 RK41 2.2 RK49 2.2 
RK2 2.2 RK10 2.2 RK18 2.2 RK26 2.2 RK34 2.2 RK42 2.2 RK50 2.2 
RK3 2.2 RK11 2.2 RK19 2.2 RK27 2.2 RK35 2.2 RK43 2.2 RK51 2.2 
RK4 2.2 RK12 2.2 RK20 2.2 RK28 2.2 RK36 2.2 RK44 2.2 RK52 2.2 
RK5 3.3 RK13 3.3 RK21 3.3 RK29 3.3 RK37 3.3 RK45 3.3 RK53 3.3 
RK6 3.3 RK14 3.3 RK22 3.3 RK30 3.3 RK38 3.3 RK46 3.3 RK54 3.3 
RK7 3.3 RK15 3.3 RK23 3.3 RK31 3.3 RK39 3.3 RK47 3.3 RK55 3.3 
RK8 3.5 RK16 3.5 RK24 3.5 RK32 3.5 RK40 3.5 RK48 3.5 RK56 3.5 
              

Code Distance  Code Distance  Code Distance  Code Distance  Code Distance  Code Distance  Code Distance  

RK57 2.8 RK65 2.8 RK73 2.8 RK81 2.8 RK89 2.8 RK97 2.8 RK105 2,8 
RK58 2.2 RK66 2.2 RK74 2.2 RK82 2.2 RK90 2.2 RK98 2.2 RK106 2,2 
RK59 2.2 RK67 2.2 RK75 2.2 RK83 2.2 RK91 2.2 RK99 2.2 RK107 2,2 
RK60 2.2 RK68 2.2 RK76 2.2 RK84 2.2 RK92 2.2 RK100 2.2 RK108 2,2 
RK61 3.3 RK69 3.3 RK77 3.3 RK85 3.3 RK93 3.3 RK101 3.3 RK109 3,3 
RK62 3.3 RK70 3.3 RK78 3.3 RK86 3.3 RK94 3.3 RK102 3.3 RK110 3,3 
RK63 3.3 RK71 3.3 RK79 3.3 RK87 3.3 RK95 3.3 RK103 3.3 RK111 3,3 
RK64 3.5 RK72 3.5 RK80 3.5 RK88 3.5 RK96 3.5 RK104 3.5 RK112 3,5 

 
The next stage of data processing involves 

calculating the distance traveled by workers to pick up 
all products from received orders. This calculation is 
performed for both the current conditions and the 
proposed heuristic methods. Two heuristic methods, S-
shape and aisle-by-aisle, are used for this analysis. 
These methods are well-known, easy to understand, 
and provide good solutions. Additionally, they are 
already integrated into interactive warehouse software. 

The third stage is a comparative analysis of the 
distances traveled by workers under the current 
method versus the two proposed heuristics. Currently, 
workers rely solely on intuition without following a 

structured pattern or guidance. Furthermore, an 
analysis of order-picking productivity will be 
conducted by comparing the number of order lines 
picked to the total picking activity in the warehouse, 
while also considering labor efficiency in terms of 
working hours. 

4. Results and discussion 

The distance of the storage rack from the exit is used 
to consider the proper storage position of each item. The 
summary of the distance between each shelf and the exit 
door in the warehouse can be seen in Table 3. Items 
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stored in the warehouse will be sent to consumers who 
have placed orders. The list of goods inquiries for May 
2024 can be seen in Table 4. The release time of the 

packing list is divided by day, indicating that several 
items will be shipped on each respective day. 

 
 

Table 4. 
Goods inquiries in May 2024 

No Code Goods 13/05 14/05 15/05 16/05 Avg Max Freq 

1 ML01 Porcelain For En1-250a 1,500 400 1,000 100 750 3 
2 ML02 Brass Stem 1-250a 1,500 400 1,000 100 750 3 
3 ML03 Top Porcelain En630 350 250 500 50 287.5 3 
4 ML04 Brass Stem 1-630a 350 250 500 50 287.5 3 
5 ML05 Porcelain 20nf250 3shed 1,600 600 1,000 200 850 3 
6 ML06 Elkom Metal Part 20nf250 1,600 600 1,000 200 850 3 
7 ML07 Lv Bushing 3kv/630 110 8 50 36 51 3 
8 ML08 Straight Connector 420 100 100 100 180 3 
9 ML09 Plug In Bushing 24kv 250a 150 25 25 75 68.75 3 
10 ML10 Tap Charger 20kv 30A 7Pos 420 20 1,000 90 382.5 3 
11 ML11 Lv Bushing En1-2000A 40 16 16 20 23 3 
12 ML12 Radiator Finwall 140 100 20 50 77.5 3 
13 ML13 Lv Bushing En1-3150a 62 10 10 10 23 3 
14 ML14 Lv Bushing 3kv/4500a 52 36 36 36 40 3 
15 ML15 Lv Bushing 3kv/6500a 40 24 24 24 28 3 
16 ML16 Protection Relay 18 3 3 3 6.75 3 
17 ML17 Lv Bushing 10nf3150 36 8 4 8 14 3 
18 ML18 Hv Bushing 52nf1000 36 8 4 8 14 3 
19 ML19 Fuse Housing Bay O Nett 275 150 20 200 161.25 3 
20 ML20 Connection Flag 1kv 1000a 430 300 100 500 332.5 3 
21 ML21 Hv Fuse - 3011014315 Din 25 10 2 10 11.75 3 
22 ML22 Hv Fuse - 301085350 Din 25 10 2 10 11.75 3 
23 ML23 Gasket Cork 20nf250a 200 50 100 50 100 3 
24 ML24 Hv Fuse - 300061340 Din 30 10 10 10 15 3 
25 ML25 Fuse Overload 15 5 5 5 7.5 3 
26 ML26 Pressure Relieve Device 1" 200 50 100 50 100 3 
27 ML27 Fuse Drip Guard 15 5 5 5 7.5 3 
28 ML28 Novaris Surge Arrester 30 10 10 10 15 3 
29 ML29 Hv Bushing 10nf630 110 30 30 30 50 3 
30 ML30 Novaris Scb 1ph 3a 230vac 15 5 5 5 7.5 3 

  

 
Figure 2. S-Shape flow 
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4.1. S-shape model 

This heuristic creates an order-picking route that 
visits each aisle containing an item exactly once (see Fig. 
2). To apply the concept of dynamic programming, one 
must define potential states, possible transitions 
between states, and the associated transition costs. 
There are six possible transitions, including: 

a. Move from the current hallway to the next hallway 
along the front of the block, traverse the entire 
hallway, and end at the back of the block. 

b. Move from the current hallway to the next hallway 
along the back of the block, traverse the entire 
hallway, and end at the front of the block. 

c. Move from the current hallway to the next hallway 
along the front of the block without entering the 
hallway. 

d. Move from the current hallway to the next hallway 
along the back of the block without entering the 
hallway. 

e. Move from the current aisle to the next aisle along 
the front of the block, traverse the aisle to the 
furthest item from the front, and return to the 
front. 

f. Move from the current aisle to the next aisle along 
the back of the block, traverse the aisle to the 
furthest item from the back, and return to the back. 

 
There are four key parameters used to calculate the 

distance traveled by workers in the order-picking 
process in a warehouse, particularly when using the S-
Shape method. The first parameter is 𝑆𝑁, which 
represents the total distance traveled by workers under 
current conditions without any route optimization. 𝑆𝐵 is 
the basic distance, referring to the total distance that 
must be covered in the order-picking process, excluding 
movement between aisles. 𝑆𝐴is the distance across 
aisles, representing the horizontal distance a worker 
travels when moving from one aisle to another. 

The last parameter is 𝑆𝑊, the distance between aisles, 
which accounts for the additional distance a worker 
must cover when passing through an empty aisle or 
switching aisles without retrieving an item. This 
distance is calculated based on the aisle width and the 
number of movements made. 𝑆𝑊 is crucial because a 

higher value increases the time and energy required by 
workers. The relatoinship among those parameters is 
expressed in Eq. (1). 
 

𝑆𝑁 =  𝑆𝐵 + 𝑆𝑊 + 𝑆𝐴 (1) 

4.2. Aisle-by-aisle model 

The order-picking route generated by this algorithm 

passes through each aisle only once. Dynamic 
programming is used to determine the optimal route for 
moving from one picking aisle to another while 
minimizing travel distance. The route begins at the 
depot and proceeds to the nearest aisle, where the 
picker collects all items on the picking list. The picker 

then exits through either the front-cross aisle or the 
middle-cross aisle to reach the next picking aisle, with 
decisions based on the shortest distance. This process 
continues until all picking locations have been visited, 
after which the picker returns to the starting point. The 
total distance is also calculated using the Eq. (1). 

4.3. Results comparison 

This section compares the performance measures of 
the S-shape method, the aisle-by-aisle method, and the 
current method used by the warehouse. Table 5 
presents the comparison of the S-shape and aisle-by-
aisle methods. 

Data was collected through a series of 10 trials and 
analyzed using interactive software to ensure 
calculation accuracy. Across the 10 trials, varying 
results were obtained (see Table 5), likely due to 
differences in conditions during each trial, such as the 
layout of goods, obstacles along the route, or human 
factors in decision-making. On average, the "S-Shape" 
method appears to be more efficient, with an average 
distance of 678.73 meters, compared to the "Aisle-by-
Aisle" method, which has an average distance of 684.04 
meters. Based on data processing using InterActive 
Freight & Warehouse software, a comparison was made 
between the distance traveled under existing conditions 
and the distances generated by the S-Shape and Aisle-
by-Aisle heuristic methods. The analysis results are 
shown in Table 6. 

The comparison results show that the S-Shape 
method significantly reduces travel distance compared 
to the aisle-by-aisle method. The average distance 
traveled using the S-Shape method is 678.73 meters, 
while the aisle-by-aisle method reaches 684.04 meters. 
This reduction in travel distance directly improves 
operational efficiency, as shorter distances lead to 
reduced working hours and increased productivity. 

The next step is to conduct a mean difference test 
using a T-test to determine whether there is a significant 
difference in the results produced by the three methods. 
This analysis will help evaluate which method provides 
the most optimal performance in reducing travel 
distance. 

 
Table 5.  

Comparison between S-shape and aisle-by-aisle 

Trial 
Distance (meters) 

S-Shape Aisle by Aisle 

1 684.13 689.04 
2 683.62 691.17 
3 662.43 706.74 
4 668.39 668.39 
5 681.13 683.44 
6 690.43 672.99 
7 680.14 671.98 
8 669.12 688.99 
9 686.77 682.95 
10 681.13 684.71 

Average 678.73 684.04 
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Table 6. 
Distance calculated 

No  Method  Distance (meters) 

1  Existing conditions  915 
2  S-shape  678.73 
3  Aisle-by-aisle  684.04 

 
Table 7.  
T-test result 

Indicator                        Methods t sig 

Distance (meters) 
Existing 2.02 0.029 
S-Shape 2.67 0.023 
Aisle-by-aisle 1.48 0.004 

 
Table 8. 
Distance calculated 

No  Method  Productivity  Line order 

1  Existing conditions  84  2,022 
2  Aisle-by-aisle  83  2,006 

 
The results of the T-test calculations (see Table 7) 

comparing the existing conditions and optimization 
results show that sig < 0.05 and t > 1.669, meaning that 
H₀ is rejected and Hₐ is accepted. This indicates a 
significant difference between the existing conditions 
and the optimization results. To further strengthen the 
statistical analysis, we calculated the 95% confidence 
interval (CI) for each method, which provides a range 
in which the true mean difference is expected to fall 
with 95% certainty. The confidence interval for the S-
Shape method is (673.21, 684.25), while for the aisle-by-
aisle method, it is (679.56, 688.52). Since there is no 
overlap between the confidence intervals of the existing 
condition and the heuristic methods, we conclude that 
the reduction in travel distance is statistically 
significant.  

Additionally, we computed Cohen’s effect size to 
measure the magnitude of the improvement. The effect 
size for the S-Shape method compared to the existing 
condition is d = 2.34, while for the aisle-by-aisle method 
compared to the existing condition, it is d = 2.21, both of 
which indicate a large effect. These results confirm that 
the heuristic methods provide a substantial reduction in 
travel distance with strong practical significance. 

The previous research on heuristic methods based 
on the Traveling Salesman Problem (TSP) algorithm for 
optimizing order picking routes demonstrated an 
average efficiency improvement of 22% in reducing 
workers' travel distance [7]. Meanwhile, research by [2] 
found that heuristic strategies such as Return and 
Midpoint can reduce travel distances by up to 18% 
compared to conventional methods. The results of this 

study indicate that the approach used provides 
comparable outcomes, with a mileage reduction 
efficiency exceeding 25% compared to existing 
conditions. Additionally, a study conducted by [20] in a 
warehouse with a two-cross-aisle layout showed that 
implementing a heuristic method could reduce travel 

distances by up to 20% by utilizing an algorithm based 
on a combination of S-Shape and Largest Gap. These 
findings confirm that the heuristic method used in this 
study is highly effective across various warehouse types 
and layout configurations. To further strengthen the 
analysis, Cohen's d was calculated to measure the 
practical significance of the study's results. The S-Shape 
method demonstrated a large effect (d = 2.34), 
indicating that the difference between this method and 

the existing conditions has a substantial impact on 
improving order-picking efficiency. 

4.4. Productivity analysis 

Table 8 supports the effectiveness of the proposed 
method. Productivity in order picking is measured by 
the number of order lines processed per working hour. 
An order line represents a unique item line in a single 
order that must be processed within the warehouse 
system. The research results indicate that the S-Shape 
method increases the number of order lines processed 
from 30 to 84 per hour, while the aisle-by-aisle method 
reaches 83 per hour. 

Productivity in the order picking process is 
calculated by dividing the total number of order lines 
successfully picked by the total labor hours used. This 
ratio reflects the efficiency of the order picking system, 
with higher values indicating improved performance 
and reduced operational time. 

Based on Table 8, the use of the S-Shape method 
increases order-picking productivity from 30 to 84 order 
lines per picker per hour, while the aisle-by-aisle 
method increases productivity from 30 to 83 order lines 
per picker per hour. These results highlight the 
effectiveness of implementing heuristic routing 
strategies in warehouse operations. 

According to [1], increasing the number of order 
lines processed per hour contributes to higher 
operational efficiency by reducing search and travel 
time for workers in the warehouse. A study by [5] also 
confirms that a more efficient order-picking system can 
increase throughput and reduce errors in order 
fulfillment, ultimately leading to higher customer 
satisfaction. Additionally, research by [16] revealed that 
applying heuristic algorithms in the order-picking 
process can increase productivity by up to 30% 
compared to conventional methods. 

Thus, the findings of this study further reinforce that 
optimization using heuristic methods not only 
improves travel distance efficiency but also positively 
impacts order processing capacity and overall 
warehouse efficiency. In terms of productivity, the S-
Shape method yields a slightly higher improvement 
than the aisle-by-aisle method. This study demonstrates 
that the S-Shape method allows an increase in the 

number of order lines processed per hour from 30 to 84, 
while the aisle-by-aisle method results in an increase to 
83 order lines per hour. These findings suggest that 
although both methods effectively reduce worker travel 
distances and increase throughput, the S-Shape method 
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provides a slight advantage in productivity due to its 
more optimal path structure [28]. 

Furthermore, [29] demonstrated that applying 
heuristic methods in a scheduling system with limited 
resources can optimize the distribution of warehouse 
workers' workload, which is crucial for reducing 
worker fatigue by minimizing travel distances. 
Research by [30] also highlights that heuristic methods 
have been successfully applied in various automated 

and manual storage systems to improve warehouse 
efficiency, particularly in optimizing the movement of 
Automated Guided Vehicles (AGVs) in very narrow 
aisles. 

4.5. Managerial implications 

This study’s results offer managerial implications for 
enhancing warehouse efficiency. The S-Shape heuristic 
method cuts worker travel distance in order picking by 
over 25% compared to conventional methods, reducing 
labor costs, energy use, and fatigue for more cost-
effective operations. It also boosts order lines processed 
per hour to 84 (from 30), speeding up the process, 
improving throughput, and enhancing customer 
satisfaction. Interactive software for heuristic 
simulation enables managers to optimize picking routes 
dynamically based on layout and demand changes, 
ensuring efficiency under varying conditions. This 
adaptability improves resource allocation and 
responsiveness, while integrating heuristics and 
software supports data-driven decisions for better 
workflows and productivity. 

5. Conclusions 

The S-Shape and aisle-by-aisle heuristic routing 
methods are used to improve and propose new order-
picking routes to shorten travel distances. This study 
successfully identifies the S-Shape method as the most 
effective, as it results in a shorter travel distance 
compared to both the current condition and the aisle-
by-aisle method. However, this study has several 
limitations. It was conducted in a warehouse with a 
specific layout and system, meaning the results may not 
be fully generalizable to warehouses with different 
structures, such as automated warehouses or those with 
dynamic storage systems. While reducing travel 
distance may help mitigate worker fatigue, this research 
does not directly measure its impact on productivity. 
Additionally, real-time fluctuations in volume and 
demand patterns were not considered in this model. 

To expand this research, several future directions 
can be explored, such as developing AI- and Machine 
Learning-based models and conducting fatigue analysis 
to design more ergonomic work strategies. 
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