MAPPING AND ANALYSIS OF MANGROVE VEGETATION DISTRIBUTION ON PANJANG ISLAND, SERANG BANTEN USING SENTINEL-2A IMAGERY

Bnadi Sarah Ayutyas, Nico Wantona Prabowo, Erik Munandar, Moch Saad, Esza Cahya Dewantara, Agitha Saverti Jasmine, Prakas Santoso, Ari Rusli, Farhan Rachmanto

Abstract


Mangroves serve as vital ecosystems in coastal zones, providing ecological, economic, and protective functions. This study aims to map the distribution and estimate the density of mangrove vegetation on Panjang Island, Serang-Banten, using Sentinel-2A satellite imagery and the Normalized Difference Vegetation Index (NDVI). Data were collected and processed using Google Earth Engine and GIS software to extract NDVI values and classify mangrove density into sparse, moderate, and dense categories. The results indicate a dominant presence of dense mangrove vegetation (NDVI 0.6–1.0), accounting for 79.3% of the study area, while moderate and sparse covers made up 15.57% and 5.26%, respectively. This analysis highlights the importance of continuous mangrove monitoring to support conservation and sustainable management strategies in coastal regions.

Full Text:

PDF

References


Badola, R., Barthwal, S., & Hussain, S. A. (2012). Attitudes of local communities towards conservation of mangrove forests: A case study from the east coast of India. Estuarine, Coastal and Shelf Science, 96(4), 443–450.

Fariz, T. R., Permana, P. I., Daeni, F., & Putra, A. C. P. (2021). Mangrove ecosystem mapping using machine learning in Google Earth Engine. Jurnal Geografi, 18(2), 83–89.

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., ... & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159.

Jiang, Y., Zhang, L., Yan, M., Qi, J., Fu, T., Fan, S., & Chen, B. (2021). High-resolution mangrove forest classification with machine learning using Worldview and UAV hyperspectral data. Remote Sensing, 13(8), 1529. https://doi.org/10.3390/rs13081529.

Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex & Intelligent Systems, 7, 2797–2818. https://doi.org/10.1007/s40747-021-00453-5

Munandar, E., Agitha, S. J., & Muta, A. K. (2023). Identification of Mangrove Cover in Banten Bay using Google Earth Engine. Journal Of Applied Geospatial Information. Vol. 7 No. 1 2023. http://jurnal.polibatam.ac.id/index.php/JAGI. ISSN Online: 2579-3608.

Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14), 2291. https://doi.org/10.3390/rs12142291.

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite-1 Symposium – Volume I: Technical Presentations, NASA SP-351, 309–317. Washington, DC: NASA.

Simarmata, N., Wikanta, K., Tarigan, T. A., Aldyansyah, M., Tohir, R. K., Fauziah, A., & Purnama, Y. (2021). Analisis transformasi indeks NDVI, NDWI dan SAVI untuk identifikasi kerapatan vegetasi mangrove menggunakan citra Sentinel di pesisir timur Provinsi Lampung. Jurnal Geografi, 19(2), 69–79.

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., & Adeli, S. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152–170.

https://doi.org/10.1016/j.isprsjprs.2020.04.001.

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: A review. Journal of Plant Ecology, 1(1), 9–23. https://doi.org/10.1093/jpe/rtm005.

Zhao, C., & Qin, C. (2021). Identifying large-area mangrove distribution based on remote sensing: A binary classification approach considering subclasses of non-mangroves. International Journal of Applied Earth Observation and Geoinformation, 108, 102757. https://doi.org/10.1016/j.jag.2022.102757.


Refbacks

  • There are currently no refbacks.



 

 

 

 

 

 

 







Tools

Published by:
Faculty of Agriculture, Universitas Sultan Ageng Tirtayasa
Managed by: Marine Sciences Study Programe, Faculty of Agriculture, Universitas Sultan Ageng Tirtayasa

Address: Jl. Raya Palka No.Km.3, Sindangsari, Pabuaran, Serang, Banten 42163
Email: [email protected]

Creative Commons License
JURNAL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.