Usulan Perbaikan Proses Produksi Abu Fly Ash dan Abu Bottom Ash dengan Pendekatan Lean Manufacturing

Bagas Sulastama¹, Lely Herlina², Achmad Bahauddin³

1, 2, 3 Jurusan Teknik Industri Universitas Sultan Ageng Tirtayasa
bagassulastama@yahoo.com¹, lelyherlina@yahoo.com², ibnumansur@yahoo.com³

ABSTRAK

PT.XYZ merupakan salah satu perusahaan yang bergerak di bidang pembangkit listrik. Salah satu produk lain yang dihasilkan adalah timbulnya limbah padat, yaitu abu terbang (fly ash) dan abu dasar (bottom ash). Pada proses penyaluran fly ash dan bottom ash memiliki beberapa kendala diantaranya berupa transportasi yaitu conveyor yang digunakan dalam penyaluran abu yang tidak maksimal, adanya pluking (batubara yang menggumpal sehingga tidak berjalan lancar), maintenance yang tidak baik, Berdasarkan hal tersebut perlu dilakukan penelitian untuk mengetahui aktifitas apa yang terjadi pada proses fly ash dan bottom ash yang menyebabkan pemborosan terbesar. Metode yang digunakan untuk mengatasi pemborosan, digunakan pendekatan lean manufacturing dengan menitik beratkan pada 7 macam pemborosan yaitu overproduction, waiting, transportation, inappropriate process, unnecessary inventori, unnecessary motion, dan defect. Setelah dilakukan identifikasi terhadap seven waste, kemudian melakukan pemetaan secara detail untuk mengetahui tools yang tepat dalam pemetaan aliran proses dengan menggunakan Value Stream Analysis Tools (VALSAT). Berdasarkan pengolahan data didapatkan persentase waste yang terjadi yaitu transportasi sebesar 20,41 %, innapropiate process sebesar 17,96%, waiting sebesar 15,10%, overproduction sebesar 14,69%, unnecessary inventori sebesar 12,65 %, unnecessary motion sebesar 9.8%, dan yang terendah adalah defect yaitu sebesar 9.39%. Total waktu lead time process fly ash sebesar 6.815,14 menit dan bottom ash sebesar 6.813,02 menit, untuk mengurangi waktu lead time perlu di rancang perbaikan dengan menggunakan dengan tools Process Activity Mapping dan Big Picture Mapping. Setelah melakukan usulan perbaikan dengan meningkatkan kapasitas pengiriman batubara menuju stok area yang diperoleh berdasarkan usulan dengan menggunakan 5W+1H, didapatkan proyeksi perubahan total waktu lead time menjadi 6.496.5 menit untk fly ash dan 6.210,38 menit untuk bottom ash di PT.XYZ.

Kata kunci: Lean manufacturing, Seven Waste, Value Stream Analysis Tools, Process Activity Mapping, Lead Time.

PENDAHULUAN

PT.XYZ merupakan salah satu perusahaan yang bergerak di bidang pembangkit listrik. Salah satu produk lain yang dihasilkan adalah timbulnya limbah padat, yaitu abu terbang (fly ash) dan abu dasar (bottom ash). Pada awalnya limbah fly ash dan bottom ash tidak dapat digunakan kembali untuk dijadikan nilai/ uang namun sekarang sudah bisa dijadikan nilai/uang, oleh sebab itu tingkat produktifitas dari listrik yang dihasilkan dari proses pembakaran batubara menghasilkan abu fly ash dan bottom ash harus ditingkatkan.

Salah satu usaha untuk selalu meningkatkan efisiensi dan efektifitas proses produksi adalah mengurangi total waktu yang diperlukan oleh suatu produk dengan melalui value stream proses produksi. Usaha ini dengan mengkombinasikan, mengurangi dan bahkan mengeliminasi aktifitas-aktifitas dalam proses produksi yang tidak menambah nilai produk (non value added), serta aktiftas yang tidak memberikan nilai tambah tetapi diperlukan untuk mendukung value added activity (Hajili, 2008).

Pada proses penyaluran fly ash dan bottom ash memiliki beberapa kendala diantaranya berupa transportasi yaitu conveyor yang digunakan dalam penyaluran abu yang tidak maksimal, adanya pluking (batubara yang menggumpal sehingga tidak berjalan lancar), maintenance yang tidak baik, koordinasi pada saat pembongkaran batubara serta pengoperasian alat berat yang tidak maksimal. Berdasarkan hal tersebut perlu diteliti untuk mengetahui aktifitas terbesar yang menyebabkan pemborosan.

Womack & Jones dalam fanani,dkk (2011), berpendapat bahwa di dalam upaya meningkatkan produktifitas perusahaan maka terlebih dahulu mengetahui kegiatan yang memberikan nilai tambah (value added) dan tidak memberikan nilai tambah (non-value added). Untuk mengetahui suatu kegiatan bersifat value added atau bersifat non value added dibutuhkan suatu pendekatan lean, dimana lean berfokus pada identifikasi dan eliminasi aktifitas-aktifitas yang tidak memiliki nilai tambah (non value add activities) dalam desain, produksi (untuk bidang manufaktur) atau operasi yang berkaitan langsung dengan pelanggan.

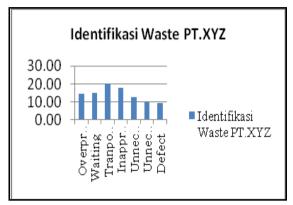
Pada penelitian ini diawali dengan mengidentifikasi waste berdasarkan 7 macam konsep pemborosan yang ada, kemudian melakukan pemilihan *Value Stream Analysis Tools* yang digunakan untuk mempermudah untuk membuat perbaikan berkenaan dengan waste yang terdapat didalam Value Stream. Setelah didapatkan tools yang tepat kemudian dibuat tools Process Activity Mapping untuk mengetahui tingkat waktu yang memakan waktu terlama dalam proses *Fly ash* dan *Bottom Ash*. Pada proses ini didapatkan kegiatan yang memakan waktu terlama yaitu pengiriman batubara menuju stok area sehingga perlu di reduksi waktu yang tepat untuk meminimasi waktu sehingga berjalan secara efektif dan efisien pada proses *Fly ash* dan *Bottom Ash*.

METODE PENELITIAN

Penelitian ini diawali dengan mengidentifikasi waste dilakukan dengan tujuan untuk mengetahui permasalahan yang terjadi pada objek penelitian kali ini. Pada tahap identifikasi waste ini dengan memberikan kuisioner terhadap karyawan yang mengerti dan memahami proses fly ash dan bottom ash di PT.XYZ. Skor kuisioner ini adalah dengan nilai maksimum 10 (paling sering terjadi) dan minimum 0 (tidak pernah terjadi) dengan total keseluruhan pembobotan waste adalah sebesar 35 point.

Value Stream Mapping ini digunakan untuk mengetahui tools yang tepat dalam penelitian kali ini dimana tools ini menggunakan korelasi antara seven waste yang ada dalam penelitian ini. Setelah membuat VALSAT maka selanjutnya dipilih tools yang tepat yaitu Process Activity Mapping, pada tools ini merinci pemetaan dari dalam proses pengerjaan serta mengidentifikasi lead time dan aliran fisik dalam proses Fly Ash dan Bottom Ash.

Aliran informasi dan fisik pada proses produksi dibuat kedalam *Big Picture Mapping* yang berguna untuk menggambarkan suatu sistem secara keseluruhan beserta aliran nilai (*Value Stream*) yang terdapat dalam perusahaan. Dengan *Big Picture Mapping* memudahkan dalam membaca aliran fisik serta informasi yang terdapat di perusahaan.


Berdasarkan observasi yang dilakukan maka data waktu pada *Process Activity Mapping* yang di buat adalah dengan menggunakan waktu rata-rata kapasitas ton/jam untuk mendapatkan *time process*. Rancangan usulan dibuat berdasarkan peringkat waste tertinggi yaitu transportasi dengan waktu proses terlama adalah pengiriman batubara menuju stok area adalah 1587,86 menit sehingga harus direduksi dengan menggunakan menentukan sebab akibat mengunakan fishbone serta rancangan usulan dengan membuat 5W+1H.

Setelah melakukan rancangan dengan menggunakan 5W+1H langkah selanjutnya yaitu membuat *Process Activity Future state* dan *Big Picture Future State* dengan total waktu *lead time* yang berbeda dengan *current state*.

Dengan usulan waktu tersebut maka diharapkan dapat meningkatkan produktifitas serta peningkatan jumlah abu yang dihasilkan dan meningkatkan penjualan abu dan mengurangi waste yag timbul dalam proses fly ash dan bottom ash.

HASIL DAN PEMBAHASAN

Penelitian ini diawali dengan penyebaran kuisioner yang dilakukan untuk mengetahui peringkat pemborosan yang terbesar dalam penelitian ini.

Gambar 1. Identifikasi waste PT.XYZ

Dari gambar diatas maka didapatkan hasil waste terbesar yaitu tranportasi dengan persentase sebesar 20,41% sedangkan yang terkecil yaitu pada defect sebesar 9.39%.

Tabel 1. Value stream analysis tools (VALSAT)

Waste/Structure	Skor Rata- Rata	PAM	SCRM	PVM	QFM	DAM	DPA	PS
Overproduction	5.14	L (5.14)	M (15.43)		L (5.14)	M (15.43)	M (15.43)	
Waiting	5.29	H (47.57)	H (47.57)	L (5.29)		M (15.86)	M (15.86)	
Tranportasi	7.14	H (64.29)						L (7.14)
Inappropiate process	6.29	H (56.57)		M (18.86)	L (6.29)		L (6.29)	
Unnecesaary inventori	4.43	M (13.29)	H (39.86)	M (13.29)		H (39.86)	M (13.29)	H (39.86)
Unnecesarry motion	3.43	H (30.86)	H (3.43)					
Defect	3.29	L (3.29)			H (29.57			
Jumlah	35	221	106.29	37.43	41	71.14	50.86	47
Persentase (%))	38.45	18.49	6.51	7.13	12.37	8.85	8.17

Dari tabel 1 di atas maka didapatkan tools VALSAT yang tepat dalam penelitian kali ini adalah *Process Activity Mapping* dengan nilai persentase sebesar 38,45% sehingga tools *Process Activity Mapping* yang digunakan dalam penelitian ini , dimana *Process Activity* Mapping ini untuk merekam seluruh aktifitas dari suatu proses dan berusaha untuk mengurangi aktifitas yang kurang penting, menyederhanakannya sehingga dapat mengurangi *waste*.

Process Activity Mapping

Process Activity Mapping akan memberikan gambaran aliran fisik dan informasi, waktu yang dibutuhkan, jarak yang ditempuh dan jumlah tenaga kerja yang digunakan dalam proses Fly Ash dan Bottom Ash. Mapping ini dibagi menjadi operasi, transportasi, inspeksi,penyimpanan serta delay. Pada operasi termasuk aktifitas yang bernilai tambah sedangkan aktifitas transportasi dan storage termasuk aktifitas yang tidak memberikan nilai tambah namun perlu dilakukan untuk mendukung Value Added.

Berdasarkan *Process Activity Mapping* terdapat 9 aktifitas dalam menghasilkan *fly ash* dengan total waktu 6496,50 menit, dengan waktu total operasi sebesar 3.461,16 menit, transportasi dengan waktu total 2.187,98 menit dan untuk penyimpanan dengan waktu total 1.166 menit.

Proses pembuatan *fly ash* kegiatan *Value Added* atau yang termasuk nilai tambah sebesar 50,79%, serta untuk aktifitas *Neccesary But Non Value Added* atau waktu yang dibutuhkan tetapi tidak memiliki nilai tambah sebesar 49,21%.

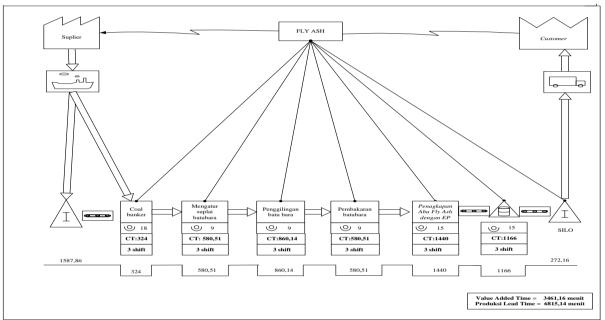
Berdasarkan *Process Activity Mapping* terdapat 8 aktifitas dalam menghasilkan *bottom ash* dengan total waktu 6.813,02 menit, dengan waktu operasi sebesar 3.461,16 menit dan transportasi 3.351,86 menit.

Proses pembuatan *Bottom ash* kegiatan *Value Added* atau yang termasuk nilai tambah sebesar 50,80% atau 3.461,16 menit , serta untuk aktifitas *Neccesary But Non Value Added* atau waktu yang dibutuhkan tetapi tidak memiliki nilai tambah sebesar 49,20% atau 3.351,86 menit.

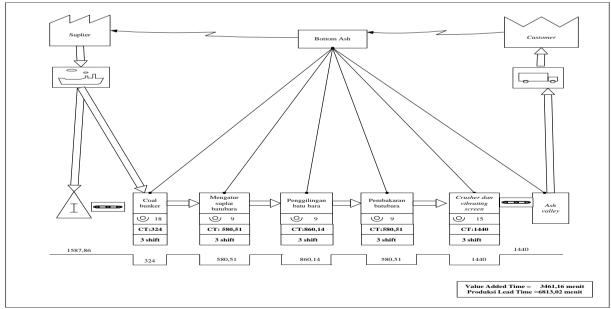
Tabel 2. Process activity mapping fly ash current state

No	Altifites	Masin lalat	Jarak	Waktu	Jumlah		Aktifitas				VA/NVA/
NO	Aktifitas	Mesin/alat	(m)	(menit)	TK	0	T	I	S	D	NNVA
1 Pengiriman	batubara coal bunker	conveyor,reclaimer,belt weigher	1100	324	18		X				NNVA
2 Pengiriman	batu bara ke stok area	conveyor, belt feeder, belt weigher	350	1587.86	18		X				NNVA
3 Mengatur j	umlah suplai batu bara ke pulverizer	Coal feeder	-	580.51	9	X					VA
4 Penggilinga	an batubara dengan pulvirizer	pulverizer	10	860.14	9	X					VA
5 Proses pem	bakaran	Coal barner	15	580.51	9	X					VA
6 Proses crus	her dan vibrating screen	sdcc,crusher,vibrating screen	10	1440	15	X					VA
7 Pengiriman	abu basah ke ash valley	Conveyor	1100	1440	-		X				NNVA
8 Penyimpan	an di ash valley	Ash valley	-	-	-				X		NNVA

Tabel 3. Process activity mapping bottom ash current state


Ma	A1-4:F400	Macin/alat	Jarak	Waktu	Jumlah		A	Aktifita	S		VA/NVA/
No	Aktifitas	Mesin/alat	(m)	(menit)	TK	0	T	I	S	D	NNVA
1	Pengiriman batubara coal bunker	conveyor,reclaimer,belt weigher	1100	324	18		X				NNVA
2	Pengiriman batu bara ke stok area	conveyor, belt feeder, belt weigher	350	1587.86	18		X				NNVA
3	Mengatur jumlah suplai batu bara ke pulverizer	Coal feeder	-	580.51	9	X					VA
4	Penggilingan batubara dengan pulvirizer	pulverizer	10	860.14	9	X					VA
5	Proses pembakaran	Coal barner	15	580.51	9	X					VA
6	Penangkapan fly ash	Electrosatic preceiptator,hoper	230	1440	15	X					VA
7	Penyimpanan sementara abu di bin	PGC,Transporter	25	1166	15				X		NNVA
8	Pengiriman abu dari transfer bin menuju silo	transfer bin,compressor,line pipe	600	276.12	-		X				NNVA
9	Penyimpanan abu di SILO	SILO	-	-	-				X		NNVA

Big Picture Mapping


Big Picture Mapping akan memberikan gambarn suatu system secara keseluruhan besarta aliran value stream yang terdapat dalam perusahaan, berikut ini adalah Big picture mapping current fly ash dan bottom ash Dengan Big Picture Mapping, sehingga dapat diketahui aliran informasi dan fisik dalam proses Fly Ash dan Bottom Ash dalam system serta lead time yang dibutuhkan dari masing-masing proses yang terjadi.

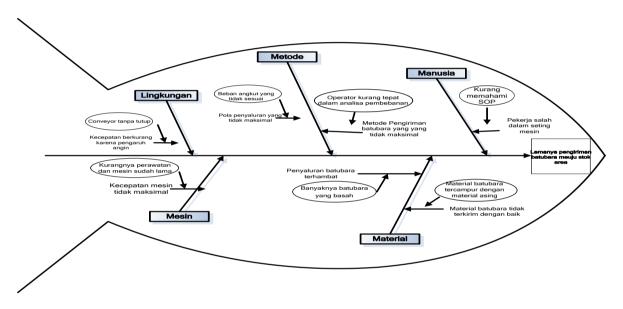
Pada *Big Picture Mapping* abu *fly ash* didapatkan total *Production lead time* sebesar 6.815,14 menit dan abu *bottom ash* sebesar 6.813.02 menit.Pada abu *fly ash* aktifitas pertama adalah proses pengiriman batubara meuju *coal bunker* dan di akhiri dengan aktifitas penyimpanan abu di dalam SILO.

Pada proses *bottom ash* sendiri di awali dengan pengiriman batubara meuju *coal bunker* dan di akhiri dengan penyimpanan abu di dalam ash valley yang terdapat di dalam PT.XYZ.

Gambar 3 Big picture mapping current state proses fly ash

Gambar 4 Big picture mapping current state proses bottom ash

Usulan Perbaikan


Sebab serta akibat yang di timbulkan diperoleh dari diagram *fishbone* dan rancangan usulan berdasarkan 5W+1H. berikut ini diagram fishbone penyebab pengiriman batubara menuju stok area yang memakan waktu terlama dalam proses *fly ash* dan *bottom ash*. Pada *fishbone* terdiri dari faktor manusia, metode, mesin, lingkungan dan material. Faktor penyebab transportasi batubara menuju stok area adalah sebagai berikut:

Dari faktor manusia penyebabnya adalah operator kurang memahami SOP (*Standar Operasional Prosedur*) dan mengakibatkan pekerja salah dalam setting mesin. Faktor metode penyebabnya adalah operator kurang tepat dalam analisa pembebanan, dan beban angkut yang tidak sesuai.

Dari faktor mesin penyebabnya adalah kurangnya perawatan dan mesin sudah lama.Dari faktor material penyebabnya adalah material batubara tercampur dengan material asing, dan banyaknya batubara yang basah. Dari faktor lingkungan disebabkan oleh *conveyor* tanpa menggunakan tutup.

Rancangan usulan dengan menggunakan 5W+1H

Setelah mengidentifikasi penyebab masalah pada proses fly ash dan bottom ash sehingga faktor yang paling dominan adalah transportasi pengiriman batubara menuju stok area yang memakan waktu terlama menggunakan fishbone, sehingga rancangan usulan dapat dibuat dengan menggunakan 5W+1H.

Gambar 5. Cause & effect diagram penyebab terjadinya waste

Tabel 4.5W+1H

No	Faktor	Why	What	Where	When	Who	How
	Kurang memahami SOP	Agar operator lebih memahami dan mengerti SOP	Memberikan pelatihan,memberikan pengarahan serta memberikan pengawasan terhadap operator	Bagian operasi	Saat atau sebelum beraktifitas	Atasan langsung (supervisor)	Memberikan pelatihan,pengarahan serta pengawasaan saat sebelum beraktifitas
2	Operator kurang tepat dalam analisa pembebanan	Agar pembebanan dapat dilakukan secara maksimal	Memberikan pelatihan dan pengarahan	Bagian operasi	Saat proses /aktifitas berlangsung	Atasan langsung (supervisor)	Memberikan pelatihan secara berkala serta pengarahan sebelum melakukan kegiatan
3	Banyaknya batubara yang basah	Agar material batubara tidak terlalu basah agar tidak terjadi pluking	Melakukan pengecekan terhadap material batubara	Bagian coalhandling	Saat pembebanan batubara	Operator	Melakukan pengecekan secara berkala
4	Beban angkut yang tidak sesuai	Agar proses penganguktan batubara sesuai dengan SOP	Koordinasi serta meningkatkan FLM	Coalhandling	Saat beban maksimum	Operator	Meningkatkan koordinasi di proses penyaluran serta meningkatkan kinerja mesin/alat
5	Kurangnya perawatan dan mesin sudah lama	Agar mesin berjalan secara optimal	Melakukan perbaikan mesin secara berkala	Bagian coalhandling dan ash handling	Saat beban maksimum	Pemeliharan /FLM (first line maintenance	Melakukan perbaikan mesin secara berkala dan analisa pembebanan yang tepat
6	Peralatan conveyor tanpa tutup	Agar proses penyaluran tidak terganggu	Memberikan penutup pada conveyor dan melakukan perbaikan pada penutup conveyor	Bagian coalhandling	Saat pengiriman batubara	Operator	Memberikan penutup pada conveyor agar pengiriman batubara dapat berjalan secara maksimal
7	Material batubara tercampur dengan material asing	Agar material batubara tidak tercampur dengan benda asing	Memaksimalkan magnetic separator	Bagian coalhandling	Saat pengiriman batubara	Operator	Melakukan maintenance pada magnetic separato r dan melakukan pengawasan batubara agar tidak tercampur dengan material asing

Process Activity Mapping Future

Berdasarkan *Process Activity Mapping Fly Ash Future state* terdapat 9 aktifitas dalam menghasilkan *fly ash* Dengan melakukan pengurangan waktu pada *necessary but non value added* maka diharapkan mampu mengurangi *lead time* dan meningktakan *Process Cycle Efficiency fly ash* dan *bottom ash* di PT.XYZ.

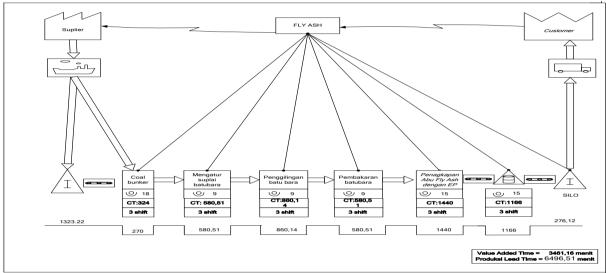
Dengan melakukan *maintenance* terhadap alat transportasi serta menambah kehandalan mesin yang semula 200 ton/jam menjadi 2400 ton/jam sehingga dapat meningkatkan *persentase* menjadi 53,27 % dan penurunan *persentase* dari transportasi menjadi 29 %, dalam hal ini berarti terjadi peningkatan *value added* pada proses *fly ash*.

Berdasarkan *Process Activity Mapping Bottom Ash Future state* terdapat 8 aktifitas dalam menghasilkan *fly ash.* Dengan melakukan pengurangan waktu pada *necessary but non value added* maka diharapkan mampu mengurangi *lead time* dan meningktakan *Process Cycle Efficiency fly ash* dan *bottom ash* di PT.XYZ.

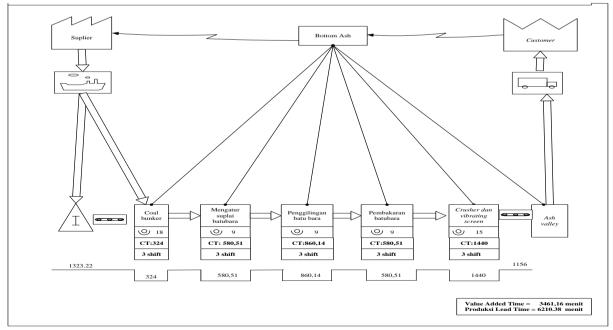
Dengan melakukan *maintenance* terhadap alat transportasi serta menambah kehandalan mesin yang semula 2000 ton/jam menjadi 2400 ton/jam maka dapat meningkatkan persentase menjadi 55,73 % dan penurunan persentase dari transportasi menjadi 44,27 % , dalam hal ini berarti terjadi peningkatan *value added* pada proses *fly ash*, maka akan mempengaruhi nilai *process cycle efficiency*.

Tabel 5. Process activity mapping fly ash future state

No	Aktifitas	Mesin/alat	Jarak	Waktu	Jumlah		A	Aktifitas	S		VA/NVA/
NO	Akuntas	Mesii/aiat	(m)	(menit)	TK	0	T	I	S	D	NNVA
1	Pengiriman Batu bara coal bunker	conveyor,reclaimer,belt weigher	1100	270	18		X				NNVA
2	Pengiriman batu bara ke stok area	conveyor, belt feeder, belt weigher	350	1323.22	18		X				NNVA
3	Mengatur jumlah suplai batu bara ke pulverizer	Coal feeder	-	580.51	9	X					VA
4	Penggilingan batubara dengan pulvirizer	pulverizer	10	860.14	9	X					VA
5	Proses pembakaran	Coal barner	15	580.51	9	X					VA
6	Penangkapan fly ash	Electrosatic preceiptator,hoper,transp	230	1440	15	X					VA
7	Penyimpanan sementara abu di bin	PGC,Transporter	25	1166	15				X		NNVA
8	Pengiriman abu dari transfer bin menuju silo	transfer bin,compressor,line pipe	600	276.12	-		X				NNVA
9	Penyimpanan abu di SILO	SILO	-	-	-				X		NNVA


Tabel 6 Process activity mapping bottom ash future state

No	Aktifitas	Mesin/alat	Jarak Waktu		Jumlah		Aktifitas				VA/NVA/
NU	AKUIItas	Mesii/aiat	(m)	(menit)	TK	0	T	I	S	D	NNVA
1 Pengirin	nan batubara coal bunker	conveyor,reclaimer,belt weigher	750	270	18		X				NNVA
2 Pengirin	nan batu bara ke stok area	conveyor, belt feeder, belt weigher	300	1323.22	18		X				NNVA
3 Mengatu	ır jumlah suplai batu bara ke pulverizer	Coal feeder	-	580.51	9	X					VA
4 Penggili	ingan batubara dengan pulvirizer	pulverizer	10	860.14	9	X					VA
5 Proses p	pembakaran	Coal barner	15	580.51	9	X					VA
6 Proses c	rusher dan vibrating screen	sdcc,crusher,vibrating screen	10	1440	15	X					VA
7 Pengirin	nan abu basah ke ash valley	Conveyor	1000	1156	-		X				NNVA
8 Penyimp	oanan di ash valley	Ash valley	-	-	-				X		NNVA


Big Picture Mapping Future state

Big picture mapping future merupakan gambaran aliran fisik serta informasi yang telah diperbaiki berdasarakan 5W+1H , dimana dengan memperbaiki kinerja alat dan mesin serta kapasitas pengiriman yang di perbaiki sehingga terjadi pengurangan waktu lead time yang dihasilkan. Berikut ini Big picture mapping future fly ash dan bottom ash :

Berdasarkan gambar *Big Picture Mapping* 5 dan 6 maka terjadi pengurangan waktu *lead time* dari *big picture mapping current* menjadi 6.496,5 menit untuk *fly ash* dan 6.210,38 menit pada *big picture mapping future state*. Dari hasil pembahasan di atas maka tingkat pemborosan yang terdapat didalam value stream dapat direduksi dengan meningkatkan kapasitas pengiriman batubara menuju stok area yang awalnya adalah 2000ton/jam menjadi 2400 ton/jam sehingga meningkatkan persentase nilai tambah dari masingmasing abu yang dihasilkan di PT.XYZ.

Gambar 5 Big picture mapping future state proses fly ash

Gambar 6 Big picture mapping future state proses bottom ash

KESIMPULAN

Jenis pemborosan yang terjadi pada proses fly ash dan bottom ash yaitu: transportation sebesar 20,41 %, innapropiate process sebesar 17,96%, waiting sebesar 15,10%, overproduction sebesar 14,69%, unnecessary inventori sebesar 12,65 %, unnecessary motion sebesar 9.8%, dan yang terendah adalah defect yaitu sebesar 9.39%. Jenis pemborosan yang paling tinggi pada transportasi adalah aktifitas pengiriman batubara menuju stok area yang memakan waktu terlama. Untuk itu diperlukan perbaikan untuk mereduksi dengan cara memberikan pelatihan, pengarahan serta pengawasaan saat sebelum beraktifitas, memberikan pelatihan secara berkala dan pengarahan sebelum melakukan kegiatan serta meningkatkan koordinasi di proses penyaluran serta meningkatkan kinerja mesin/alat. Melakukan maintenance pada magnetic separator dan melakukan pengawasan batubara agar tidak tercampur dengan material asing serta melakukan pengecekan secara berkala agar batubara tidak terlalu basah sehingga mengurangi terjadinya pluking.

DAFTAR PUSTAKA

Fanani,Z dan Laksono, M. 2011. Implementasi Lean Manufacturing Untuk Peningkatan Produktivitas (Studi Kasus Pada PT.Ekamas Fortuna Malang). *Prosiding* Seminar Nasional Manajemen Teknologi XII. Surabaya.

Gaspersz V dan Fontana A. 2011. *Lean Six Sigma for Manufacturing and Service Industries*. Vichisto Publication. Bogor.

Hajili. 2008. Usulan Perbaikan Lean Manufacturing Pada Sistem Produksi Dengan Pendekatan lean-discret event simulation. *Tugas Akhir*, Jurusan Teknik Industri, FT Untirta. Cilegon.

Hines, Peter and Rich, Nick 1997. The Seven Value Stream Mapping Tools. *International Journal of Operation & Production Management*, Vol. 17 No. 1, 1997, pp. 46-64.