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A B S T R A C T 

This paper presents the outcomes of a research experiment on the drying process of seaweed. There are 

numerous approaches to clustering data, such as partitioning and the Hierarchical Clustering Algorithm 

(HCA). The HCA has been implemented in binary tree structures to visualize data clustering. We 

conducted a comparative analysis of the four primary methodologies utilized in HCA, namely: 1) single 

linkage, 2) complete linkage, 3) average linkage, and 4) Ward's linkage. Clustering validation is widely 

recognized as a crucial issue that significantly impacts the effectiveness of clustering algorithms. 

Clustering validation can be identified, such as internal and external validation. Internal clustering 

validation, in particular, holds significant importance in the realm of data science. With this article, the 

main goal is to do an empirical evaluation of the traits that a representative set of internal clustering 

validation indices, namely Connectivity, Dunn, and Silhouette, show. In this paper, the HCA applies two 

distance functions between Euclidean and Manhattan distances to analyze the entanglement function and 

internal validity. 

 

A B S T R A K 

Makalah ini menyajikan hasil percobaan penelitian proses pengeringan rumput laut. Ada banyak 

pendekatan untuk mengelompokkan data seperti partitioning dan hierarchical clustering algorithm (HCA). 

HCA telah diterapkan dalam struktur pohon biner untuk memvisualisasikan pengelompokan data. Kami 

melakukan analisis komparatif terhadap empat metodologi utama yang digunakan dalam HCA yaitu: 1) 

linkage tunggal, 2) linkage lengkap, 3) linkage rata-rata, dan 4) linkage Ward. Validasi pengelompokan 

diakui secara luas sebagai masalah penting yang berdampak signifikan terhadap efektivitas algoritma 

pengelompokan. Validasi clustering dapat diidentifikasi seperti validasi internal dan eksternal. Validasi 

pengelompokan internal, khususnya, memiliki arti penting dalam bidang ilmu data. Tujuan utama artikel 

ini adalah untuk melakukan evaluasi empiris terhadap karakteristik yang ditunjukkan oleh kumpulan 

indeks validasi pengelompokan internal yang representatif, khususnya Konektivitas, Dunn, dan Silhouette. 

Dalam makalah ini, HCA menerapkan dua fungsi jarak antara jarak Euclidean dan Manhattan untuk 

menganalisis fungsi keterikatan dan validitas internal. 
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1. Introduction 

The clustering is the classification of data into groups or clusters [1]. It is the most significant issues in unsupervised learning. It classifies data without label 

(class) [2]. It is a widely utilized operation in numerous application domains, including exploratory data science and engineering. The process of clustering 

involves the assignment of each individual object to one or more distinct groups based on certain criteria or characteristics objects in the same group are 

very similar (intra-cluster similarity/compactness) while objects in different groups are dissimilar (inter-cluster similarity/separation) [3], [4]. 

The clustering is divided into the following categories: Partitioning and Hierarchical Clustering Algorithms (HCA). The research only emphasizes 

on HCA approach which narrow down to agglomerative [5]. In a HCA, due to the multiple resolutions of the clusters, it is possible to recursively divide a 

sizable cluster into smaller sub-clusters [6]. 

The HCA can be classified as either agglomerative, also known as "bottom-up," or divisive, also known as "top-down". Agglomerative algorithms 

initiate the clustering process by considering each element as an individual cluster. Subsequently, these clusters are progressively merged together to form 

larger clusters [7], [8]. 

The HCA is a data analysis technique that involves the grouping of data objects into a hierarchical tree-like structure known as a cluster. It generates 

a nested sequence of partitions, with a single, all-inclusive cluster at the top and singletons of individual objects at the bottom. The concept of an intermediate 

level can be viewed as the combination of two clusters from the previous lower level or the division of a cluster from the subsequent higher level. The 

graphical representation of the output from a HCA is commonly depicted as a dendrogram, which visually resembles a tree structure. The merging process 

and intermediate clusters are depicted graphically in this tree. The visual representation depicts the process of combining points into a solitary cluster [9]. 

The dendrogram is a useful tool to visualize the outcomes of HCA. It visually representations that depict the hierarchical relationships between entities 

based on their levels of dissimilarity and similarity. On the right side of the dendrogram, every individual observation is as an independent cluster. For each 

observation, horizontal lines proceed up at different values between "dissimilarity" and "similarity”, these lines have connections to lines generated by other 

observations using lines that are horizontal. The procedure of observation continues until all of the observations are clustered together on the right side of 

the dendogram [10]. 

In the context of clustering, distance is a crucial parameter to identify clusters. Distance measures can be utilized to calculate the degree of similarity 

between objects [11]. The aims of the research are to explore different distance measures that could be applied in this clustering and to evaluate how different 

distance measures in HCA such as single, complete, average, and Ward's linkage method would affect the clustering output. The distance measures applied 

in this research includes Euclidean and Manhattan distance. 

 

2. Methodology 

2.1. Hierarchical Clustering Algorithm 

The HCA is utilized to arrange data in a hierarchical structure based on the proximity matrix. Linkage is a metric used to assess the proximity between two 

distinct clusters of elements. There are different of linkages namely single, complete, average, and wards. 

Table 1. Hierarchical Clustering Algorithm 

Method’s Distance update formula for 𝒅(𝑰 ∪ 𝑱, 𝑲) Cluster dissimilarity between clusters A and B 

Single min(𝑑(𝐼, 𝐽), 𝑑(𝐽, 𝐾)) 𝑚𝑖𝑛𝑎∈𝐴,𝑏∈𝐵𝑑[𝑎, 𝑏] 

Complete max(𝑑(𝐼, 𝐽), 𝑑(𝐽, 𝐾)) 𝑚𝑎𝑥𝑎∈𝐴,𝑏∈𝐵𝑑[𝑎, 𝑏] 

Average 𝑛𝐼𝑑(𝐼, 𝐾) + 𝑛𝐽𝑑(𝐽, 𝐾)

𝑛𝐼 + 𝑛𝐽
 

1

|𝐴||𝐵|
∑ ∑ 𝑑[𝑎, 𝑏]

𝑏∈𝐵𝑎∈𝐴

 

Ward 𝑛𝑖 + 𝑛𝑘

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘
𝑑(𝐶𝑖, 𝐶𝑘) +

𝑛𝑗 + 𝑛𝑘

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘
𝑑(𝐶𝑗, 𝐶𝑘) −

𝑛𝑖

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘
𝑑(𝐶𝑖, 𝐶𝑗) 

√
2|𝐴||𝐵|

|𝐴| + |𝐵|
 . ‖𝐶𝐴 − 𝐶𝐵‖

2
 

Clustering based on single linkage, the single element pair, specifically those two elements (one in each cluster) that are located in the closest 

proximity to each other, is used to calculate the distance that separates two clusters. This algorithm is also referred to as nearest neighbor clustering [12]. 

The complete linkage algorithm defines inter-cluster distance using the farthest distance between two objects [13]. The Ward's linkage can be achieved 

through the utilization of the Lance-Williams formula [14]. The Average linkage is the average distance between elements within each cluster. The distance 

between any two clusters 𝐴 and 𝐵, each of size (i.e., cardinality) |𝐴| and |𝐵|, is taken to be the average of all distances 𝑑(𝑥, 𝑦) between pairs of objects x in 

A and y in B [15]. 

2.2. Euclidean Distance 

When presented with two instances in p-dimensions, 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝) and 𝑥𝑗 = (𝑥𝑗1, 𝑥𝑗2, . . . , 𝑥𝑗𝑝), The calculation of the distance between two data 

instances can be performed using the Minkowski metric [16]. 

𝑑(𝑥𝑖 , 𝑥𝑗) = (|𝑥𝑖1 − 𝑥𝑗1|
2

+|𝑥𝑖2 − 𝑥𝑗2|
2

+ |𝑥𝑖3 − 𝑥𝑗3|
2

+. . . . +|𝑥𝑖𝑝 − 𝑥𝑗𝑝|
2

)

1

2     (1) 

𝑑(𝑥𝑖 , 𝑥𝑗) = (∑ ∑ |𝑥𝑖1 − 𝑥𝑗1|
2𝑛

𝑗=1
𝑛
𝑖=1 )

1

2
         (2) 
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2.3. Manhattan Distance 

Manhattan distance between two items is the sum of their component differences [17]. The distance between a point 𝑥 = (𝑥1, 𝑥2, . . . 𝑥𝑛) and a point 𝑦 =

(𝑦1, 𝑦2, . . . 𝑦𝑛) is: 

 𝑀𝐷(𝑥,𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1 ,          (3) 

where the variables 𝑥𝑖 and 𝑦𝑖 represent the values of the 𝑖𝑡ℎ variable at points x and y, respectively, with n denoting the number of variables. 

 

2.4. Connectivity 

The concept of measuring connectivity is derived from graph theory [18]. Specify as n𝑛𝑖(𝑗) the j th shortest neighbor of observation i, and let 𝑥𝑖,𝑛𝑛𝑖(𝑗)
 be 

zero if i and n𝑛𝑖(𝑗) are in the same cluster and 1/j otherwise. Then, for a specific clustering partition C = {𝐶𝑖 , . . . , 𝐶𝑘} of the N observations into K disjoint 

clusters, the definition of connectivity is 

Conn(C) = ∑ ∑ 𝑥𝑖,𝑛𝑛𝑖(𝑗)

𝐿
𝑗=1

𝑀
𝑖=1 .          (4) 

Connection values range from 0 to infinity (∞) and should be minimized [19]. 

2.5. Dunn Indexed 

Dunn's index ought to be maximized [20]. The range of the Dunn index is zero (0) to infinity (∞). The formula for the Dunn index is 

DI =
𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥
            (5) 

𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑑(𝑥, 𝑦);  𝑥 ∈ 𝐶𝑖 , 𝑦 ∈ 𝐶𝑗,𝑖 ≠ 𝑗 }         (6) 

𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦);  𝑥 ∈ 𝐶𝑖 , 𝑦 ∈ 𝐶𝑗,𝑖 = 𝑗 }        (7) 

2.6. Silhouette 

The silhouette value expresses the degree of certainty in the clustering assignment of a specific observation, with values close to 1 (positive) for well-

clustered observations and Unwell clustered observations with values close to -1 (negative) [21]. The definition of silhouette for observation i is: 

𝑆𝑖 =
𝑏𝑖−𝑎𝑖

𝑚𝑎𝑥{𝑎𝑖,𝑏𝑖}
,           (8) 

𝑏𝑖 = 𝑚𝑖𝑛
∑ 𝑑(𝑖,𝑗)𝑗

|𝑐𝑗|
, 𝐶𝑖 ≠ 𝐶𝑗 , and          (9) 

𝑎𝑖 = 𝑚𝑖𝑛
∑ 𝑑(𝑖,𝑗)𝑗

|𝑐𝑗|
, 𝐶𝑖 = 𝐶𝑗 ,          (10) 

where, 𝑎𝑖 is the average distance between observation i and all other observations in the same cluster and 𝑏𝑖 average distance in the closest neighboring 

cluster between observation i and all other observations. 

 

3. Result and Discussion 

3.1 Hierarchical Clustering Algorithm of Euclidean Distance 

The central issue is determining the value of the parameter k (cluster). Furthermore, the second difference and D-index index D R package for determining 

the quantity of clusters. The following four images are provided for the purpose of determining the number of clusters through hierarchical analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 Figure 1: Number of Cluster: 

(a) Single, (b) Complete, (c) Average, and (d) Ward-Linkage 
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It is important to emphasize that this approach consistently considers the majority of the indexes pertaining to each cluster size. The best number of 

clusters is 3, which is easily visible in the second differences D-index graph. The Euclid distance has been employed to determine the distance between the 

data. This study constructed dendrograms resulting from cluster analysis for objective functions among single, complete, average, and ward method in order 

to discuss the results using the Euclidean distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dendrograms for Euclid Distance 

Four dendogram images are displayed above. The results examine the quantity of each subcluster within every dendogram. 

Table 2. Sub-cluster from Dendogram 

Hierarchical Sub-cluster Value 

Single 

Cluster 1 1911 

Cluster 2 2 

Cluster 3 1 

Complete 

Cluster 1 453 

Cluster 2 758 

Cluster 3 703 

Average 

Cluster 1 175 

Cluster 2 581 

Cluster 3 1158 

Ward 

Cluster 1 412 

Cluster 2 1097 

Cluster 3 405 

The member counts for each cluster are presented in Table 2, categorized by ward, single, complete, average, and ward. For single-linkage cluster 1 

had majority members which 1911 members. Complete-linkage cluster 2 had majority members which 758 members. Average-linkage cluster 3 had majority 

members which 1158 members. Ward-linkage cluster 2 had majority 1097. 

The internal validation of clusters is of utmost importance in the field of clustering. In this analysis, the result objectively discusses various techniques 

of cluster validation. 

Table 3. Internal Validation for Euclid Distance 

Hierarchical Internal Validation Value 

Single 

Connectivity 6.7869 

Dunn 0.1201 

Silhouette 0.0551 

Complete 

Connectivity 166.3413 

Dunn 0.0349 

Silhouette 0.3045 

Average 

Connectivity 75.9365 

Dunn 0.0341 

Silhouette 0.3361 
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Hierarchical Internal Validation Value 

Ward 

Connectivity 111.5837 

Dunn 0.0550 

Silhouette 0.2962 

According to the findings presented in Table 3, the connectivity value (minimized) is recorded as 6.7869, specifically observed under the single-

linkage method. The Dunn index achieves a minimum value of 0.0341 when utilizing the average-linkage method. The maximum value of the silhouette at 

average linkage is 0.3361.  

3.2 Hierarchical Clustering Algorithm of Manhattan Distance 

Figure 3 illustrates four images that are used to determine the number of clusters in each hierarchical method, specifically using the Manhattan distance 

metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Number of Cluster: 

(a) Single, (b) Complete, (c) Average, and (d) Ward-Linkage 

Figure 3 shown the best number of clusters is 2 for Single-Linkage, Complete-Linkage is 3 clusters, Average-Linkage is 3 clusters, and Ward-Linkage 

is 2 clusters. Figure 4 is four images of dendograms. The results examine the quantity of every subgroup within every dendogram. 

Figure 4. Dendrograms for Manhattan Distance 
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Table 4. Sub-cluster from Dendogram 

Hierarchical Sub-cluster Value 

Single 
Cluster 1 1913 

Cluster 2 1 

Complete 

Cluster 1 462 

Cluster 2 735 

Cluster 3 717 

Average 

Cluster 1 419 

Cluster 2 1283 

Cluster 3 212 

Ward 
Cluster 1 417 

Cluster 2 1497 

Table 4 shows the number of members for each cluster when applied amongst single, complete, average, and wards. For single-linkage cluster 1 had 

majority members which 1913 members. Complete-linkage cluster 2 had majority members which 735 members. Average-linkage cluster 2 had majority 

members which 1283 members. Ward-linkage cluster 2 had majority 1497. 

Table 5. Internal Validation for Manhattan Distance 

Hierarchical Internal Validation Value 

Single 

Connectivity 2.9290 

Dunn 0.0806 

Silhouette 0.1654 

Complete 

Connectivity 138.6984 

Dunn 0.0306 

Silhouette 0.3624 

Average 

Connectivity 45.1841 

Dunn 0.0233 

Silhouette 0.3566 

Ward 

Connectivity 25.6734 

Dunn 0.0200 

Silhouette 0.4783 

It is also essential to validate clusters objectively discuss several techniques of cluster validation. Table 5 shows amongst the connectivity value 

(minimize) is 2.9290 at single-linkage. The Dunn value (minimize) is 0.0200 at Ward’s-linkage. The Silhouette value (maximize) is 0.4783 at Ward’s-

linkage. From table above that Ward-linkage method better than others. 

 

4. Conclusion 

This paper investigated the use of Euclidean distances and Manhattan distance amongst Single, complete, average, and Ward’s-linkage method. And 

comparing entanglement function each other’s. For Euclid distance between average and complete entanglement value which has a very high similarity is 

0.33. The entanglement average versus ward's has many differences is 0.91. Validity shown amongst the connectivity value (minimize) is 6.7869 at single-

linkage. The Dunn value (minimize) is 0.0341 at average-linkage. The Silhouette value (maximize) is 0.3361 at average-linkage. The values above that 

Average-linkage method better than others. For Manhattan distance between complete versus ward’s entanglement value which has a very high similarity 

is 0.33. The entanglement average versus ward's has many differences is 0.84. Validity shown amongst the connectivity value (minimize) is 2.9290 at single-

linkage. The Dunn value (minimize) is 0.0200 at Ward’s-linkage. The Silhouette value (maximize) is 0.4783 at Ward’s-linkage. From table above that 

Ward-linkage method better than others. In future, the research may be extended by considering for dendogram between normal and un-normal data to 

improve the clustering accuracy. 
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