

## FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA

Home page journal: http://jurnal.untirta.ac.id/index.php/jwl



# Utilization of Flywheel Generators with Inertial Loads To Produce Optimal Power

Royan Hidayat\*, Abdullah Faqih Ibn Umar, Ahmad Farid, Galuh Renggani Wilis

<sup>1,2,3,4</sup> Faculty of Engineering and Computer Science, Pancasakti University, Tegal \*Corresponding author: <u>royan@upstegal.ac.id</u>

| ARTICLE INFO                                                                                     | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received 27/09/2024<br>Revision 04/06/2025<br>Accepted 19/06/2025<br>Available online 20/06/2025 | The increasing need for electrical energy encourages the development of more efficient alternative energy sources. This study aims to analyze the utilization of flywheel-based electric generators with inertial loads to produce optimal output power. The research method used is an experiment, by testing a flywheel-based electric generator with variations in flywheel mass, namely 26 kg, 28 kg, and 54 kg. Testing is carried out by measuring the rotational speed of the shaft, torque, and output power produced under various operational conditions. The results of the study showed that the use of a flywheel contributed to maintaining the stability of the generator rotation speed, so that the output power produced an optimal output power of 367.6 W compared to other flywheels. The flywheel is also able to store mechanical energy and release it as needed, increasing system efficiency. The conclusion of this study is that a flywheel-based generator with an inertial load can be a potential solution in the development of more efficient and sustainable alternative power plants. |
|                                                                                                  | Keywords: electric generator, flywheel, inertial load, output power, optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# **1. INTRODUCTION**

The need for energy in the current era is very large due to the rapid development of technology in all fields. Electrical energy can be generated from power generating machines, one of which is the use of electric generators which are now being intensified. New and renewable energy sources in the future will increasingly have a very important role in life. Especially in remote areas that researchers have visited where electrical energy sources are still very minimal, which finally researchers took this research to utilize existing generators. The working principle of the generator is to convert mechanical energy into electrical energy. The generator consists of two main parts, namely the rotor and the stator. The rotor is the part that moves and produces a magnetic field. The stator is the part that is still and receives magnetic flux. Electric generating machines require an electrical system as a producer of electric current,

namely by using an electric dynamo as a generator. Electric dynamos often experience many problems that can reduce their work efficiency in a power plant.

The objectives to be achieved in this research are to improve the flywheel-based electrical energy system by utilizing an electric generator, study the utilization of electrical energy by using a flywheelbased electrical generator and identify the parameters and performance of the flywheel-based electrical generator system in utilizing electrical energy.

This research has important significance because it has the potential to overcome challenges in the efficiency and sustainability of electrical energy utilization using flywheel technology. By analyzing the utilization of electric generators using flywheels through inertial loads generated from the rotation of the flywheel, this study aims to improve our understanding of flywheel efficiency and performance compared to conventional energy storage methods. The results of this study are expected to provide practical solutions that can be applied to improve the stability and reliability of electric power systems, reduce environmental impacts, and support the transition to a more sustainable energy system. Thus, this research can make a significant contribution to the innovation of electric generator technology and support global efforts to achieve energy sustainability.

### 2. METHODOLOGY

#### 2.1 Research methods

The research method used is the experimental method, which is a method to find a causal relationship between problems that have been determined by research with those that affect the output power of the electric generator. The experimental method used is to analyze the utilization of flywheel-based electric generators with inertial loads to increase the efficiency of the electrical energy system.

#### 2.2 Research Variables

In this study there are two types of variables, including:

#### 2.2.1 Independent variable

Independent variables are conditions that affect the emergence of a symptom. In this study, the independent variables are the use of flywheel masses of 26 kg, 28 kg and 54 kg.

#### 2.2.2 Dependent variable

The dependent variable is a variable that is influenced by the independent variable. This variable is the result of the treatment given by the independent variable. In this study, the variables affected by the independent variable are to produce optimal rotation, torque and output power.

#### 2.3 Data analysis techniques

Record all measurement and analysis results to determine the characteristics of the flywheel-based electric generator you created.

#### 2.3.1 Moment of inertia

The moment of inertia is calculated using the equation (1):

$$I = \frac{1}{2}mr^2 \tag{1}$$

Where, I is moment of inertia, m is flywheel mass, and r is flywheel spokes.

#### 2.3.2 Torque

Torque is calculated using the equation (2): T = Fr (2) Where, T is torque, F is force, and R is radius of flywheel.

Torque is obtained by multiplying the force by the radius of the flywheel. To find the value of the force, can be used the equation (3):

$$F = m\alpha \qquad (3)$$

Where, F is the force that working on object (N), m is flywheel mass (kg), and  $\alpha$  is acceleration of an object subjected to force (m/s<sup>-2</sup>).

The force is obtained by multiplying the mass of the flywheel by the radius of the flywheel. To find the acceleration value of an object can be used the equation (4):

$$\alpha = \frac{\Delta \omega}{\Delta t} \tag{4}$$

Where,  $\alpha$  is acceleration of an object that is given force (m/s<sup>-2</sup>),  $\Delta \omega$  is rotational speed (rad/s), and  $\Delta t$ is time (s). To find the change in rotational speed, use the equation (5):

$$\omega = 2\pi f \tag{5}$$

Where,  $\omega$  is rotational speed (rad/s) and f is rotation frequency (Hz).

The rotation frequency (rpm) is calculated with the equation (6):

$$f = \frac{rpm}{60} \tag{6}$$

Then to find the moment of force can be used the equation (7):

Where,  $\tau$  is moment of force, I is moment of inertia, and  $\alpha$  is rotational acceleration.

2.3.3 *The relationship between input and output power through efficiency.* 

Electrical power is calculated using the equation (8):

$$\eta = \frac{P_{out}}{P_{in}} \times 100\% \qquad (8)$$

Where,  $\eta$  is efficiency (%),  $P_{out}$  is output power (Watt), and  $P_{in}$  is power input (Watt).

### 3. RESULTS AND DISCUSSION

 $\tau =$ 

#### 3.1 Results

Analysis of the use of flywheel-based electric generators to determine efficient output for several loads. In this study, the loads used were GMC 80W pedestal fan, MF-65G 260W water fan, and JY1A-4 0.37 kW single phase motor. This research and testing were carried out using a 220V/2800rpm AC electric motor as the main driver sourced from PLN electricity. The output used was a Matsumoto ST-3 1 phase generator.

# 3.1.1 Calculation of the moment of inertia, torque and power of the flywheel

The mass of flywheel is m = 26 kg and r = 0.42 m, the moment of inertia is:

$$I = \frac{1}{2}mr^2 = \frac{1}{2}(26)(0.42)^2 = 2.293 \, kgm^2$$

The rotation speed f = 551,4 rpm (9.1 Hz) and time is 60s, the angular speed is:

$$\omega = 2\pi f = 2(180)(9.1) = 3.276 \frac{raa}{s}$$

The rotational acceleration is:

$$\alpha = \frac{\Delta\omega}{\Delta t} = \frac{3.276}{60} = 54.6 \, rad/s^2$$

Force moment is:

$$\tau = I\alpha = 2.293(54.6) = 125.19 N$$

Table 1. Electric motor input with a flywheel mass of 26 kg

| Burden                           | n1 (electric<br>motor pulley<br>rpm) | n2 (flywheel<br>pulley rpm) | n (rpm pulley<br>generator) | P <sub>in</sub><br>(Watt) |
|----------------------------------|--------------------------------------|-----------------------------|-----------------------------|---------------------------|
| Fan                              | 2901                                 | 551.4                       | 1703                        | 895.3                     |
| Blower                           | 2882                                 | 547.5                       | 1684                        | 1014                      |
| Electric motor                   | 2837                                 | 537.2                       | 1654                        | 1254                      |
| Fan + Blower                     | 2859                                 | 542.7                       | 1674                        | 1105                      |
| Fan + Electric<br>Motor          | 2808                                 | 531.5                       | 1635                        | 1331                      |
| Blower +<br>Electric Motor       | 2773                                 | 523.1                       | 1609                        | 1469                      |
| Fan + Blower +<br>Electric Motor | 2743                                 | 518.1                       | 1587                        | 1561                      |

Table 2. Output of electric generator with flywheel mass 26 kg

| Burden                              | n1 (electric<br>motor pulley<br>rpm) | n1 (flywheel<br>pulley rpm) | n1 (rpm pulley generator) | P <sub>out</sub><br>(Watt) |
|-------------------------------------|--------------------------------------|-----------------------------|---------------------------|----------------------------|
| Fan                                 | 2901                                 | 550.9                       | 1702                      | 81.3                       |
| Blower                              | 1874                                 | 545.6                       | 1684                      | 193.6                      |
| Electric motor                      | 1823                                 | 535.0                       | 1649                      | 205.9                      |
| Fan + Blower                        | 2853                                 | 541.3                       | 1669                      | 272.1                      |
| Fan + Electric<br>Motor             | 2802                                 | 530.2                       | 1632                      | 273.4                      |
| Blower +<br>Electric Motor          | 2764                                 | 522.3                       | 1604                      | 367.6                      |
| Fan + Blower<br>+ Electric<br>Motor | 2733                                 | 515.9                       | 1582                      | 425.7                      |

3.1.2 Calculation of the moment of inertia, torque and power of the flywheel mass 28 kg.

The mass of flywheel is m = 28 kg and r = 0.42 m, the moment of inertia is:

$$I = \frac{1}{2}mr^2 = \frac{1}{2}(28)(0.42)^2 = 2.469 \, kgm^2$$

The rotation speed f = 545,5 rpm (9.0 Hz) and time is 60s, the angular speed is:

$$\omega = 2\pi f = 2(180)(9.0) = 3.240 \frac{rad}{s}$$

The rotational acceleration is:

$$\alpha = \frac{\Delta\omega}{\Delta t} = \frac{3.240}{60} = 54 \ rad/s^2$$

Force moment is:

$$\tau = I\alpha = 2.2469(54) = 133.32 N$$

Table 3. Electric motor input with a flywheel mass of 28 kg

| Burden                           | n1 (electric<br>motor pulley<br>rpm) | n2 (flywheel<br>pulley rpm) | n3 (rpm<br>pulley<br>generator) | P <sub>in</sub><br>(Watt) |
|----------------------------------|--------------------------------------|-----------------------------|---------------------------------|---------------------------|
| Fan                              | 2893                                 | 548.6                       | 1700                            | 876.9                     |
| Blower                           | 2871                                 | 543.4                       | 1684                            | 976.4                     |
| Electric motor                   | 2816                                 | 529.8                       | 1636                            | 1236                      |
| Fan + Blower                     | 2834                                 | 535.7                       | 1662                            | 1174                      |
| Fan + Electric<br>Motor          | 2761                                 | 522.2                       | 1619                            | 1413                      |
| Blower + Electric<br>Motor       | 2708                                 | 510.0                       | 1579                            | 1558                      |
| Fan + Blower +<br>Electric Motor | 2644                                 | 5694                        | 1538                            | 1698                      |

Table 4. Output of electric generator with flywheel mass of 28 kg

| mac                              | 501 20 Kg                            |                             |                                 |                |
|----------------------------------|--------------------------------------|-----------------------------|---------------------------------|----------------|
| Burden                           | n1 (electric<br>motor pulley<br>rpm) | n2 (flywheel<br>pulley rpm) | n3 (rpm<br>pulley<br>generator) | Pout<br>(Watt) |
| Fan                              | 2880                                 | 545.5                       | 1692                            | 81.6           |
| Blower                           | 2852                                 | 540.2                       | 1676                            | 190.2          |
| Electric motor                   | 2782                                 | 527.4                       | 1633                            | 203.9          |
| Fan + Blower                     | 2826                                 | 535.4                       | 1658                            | 267.3          |
| Fan + Electric<br>Motor          | 2754                                 | 520.6                       | 1612                            | 269.1          |
| Blower + Electric<br>Motor       | 2695                                 | 509.7                       | 1579                            | 357.2          |
| Fan + Blower +<br>Electric Motor | 2647                                 | 498.1                       | 1541                            | 408.0          |
|                                  |                                      |                             |                                 |                |

# 3.1.3 Calculation of the moment of inertia, torque and power of the flywheel mass 54 kg.

The mass of flywheel is m = 54 kg and r = 0.42 m, the moment of inertia is:

$$I = \frac{1}{2}mr^2 = \frac{1}{2}(54)(0.42)^2 = 2.762 \ kgm^2$$

The rotation speed f = 550,1 rpm (9.1 Hz) and time is 60s, the angular speed is:

$$\omega = 2\pi f = 2(180)(9.1) = 3.276 \frac{raa}{s}$$

The rotational acceleration is:

$$\alpha = \frac{\Delta\omega}{\Delta t} = \frac{3.276}{60} = 54.6 \ rad/s^2$$

Force moment is:

$$\tau = I\alpha = 2.762(54.6) = 150.80 N$$

Table 5. Electric motor input with a flywheel mass of 54 kg.

| n1 (electric<br>motor<br>pulley<br>rpm) | n2 (flywheel<br>pulley rpm)                                             | n3 (rpm<br>pulley<br>generator)                                                                                                                                                                                                           | P <sub>in</sub><br>(Watt)                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2905                                    | 551.4                                                                   | 1704                                                                                                                                                                                                                                      | 904.5                                                                                                                                                                                                                                                                                                                                                            |
| 2880                                    | 546.4                                                                   | 1687                                                                                                                                                                                                                                      | 1018                                                                                                                                                                                                                                                                                                                                                             |
| 2835                                    | 535.3                                                                   | 1651                                                                                                                                                                                                                                      | 1256                                                                                                                                                                                                                                                                                                                                                             |
| 2859                                    | 541.2                                                                   | 1671                                                                                                                                                                                                                                      | 1107                                                                                                                                                                                                                                                                                                                                                             |
| 2801                                    | 529.5                                                                   | 1634                                                                                                                                                                                                                                      | 1343                                                                                                                                                                                                                                                                                                                                                             |
| 2772                                    | 521.9                                                                   | 1602                                                                                                                                                                                                                                      | 1479                                                                                                                                                                                                                                                                                                                                                             |
| 2743                                    | 428.8                                                                   | 1584                                                                                                                                                                                                                                      | 1582                                                                                                                                                                                                                                                                                                                                                             |
|                                         | motor<br>pulley<br>rpm)<br>2905<br>2880<br>2835<br>2859<br>2801<br>2772 | motor<br>pulley<br>rpm)         n2 (flywheel<br>pulley rpm)           2905         551.4           2880         546.4           2835         535.3           2859         541.2           2801         529.5           2772         521.9 | motor<br>pulley<br>rpm)         n2 (flywheel<br>pulley rpm)         n3 (flpm<br>pulley<br>generator)           2905         551.4         1704           2880         546.4         1687           2835         535.3         1651           2859         541.2         1671           2801         529.5         1634           2772         521.9         1602 |

Table 6. Output of electric generator with flywheel mass of 54 kg.

|                                  | 0                                     |                                    |                                  |                            |
|----------------------------------|---------------------------------------|------------------------------------|----------------------------------|----------------------------|
| Burden                           | n 1 (electric<br>motor pulley<br>rpm) | n 2<br>(flywheel<br>pulley<br>rpm) | n 3 (rpm<br>pulley<br>generator) | P <sub>out</sub><br>(Watt) |
| Fan                              | 2889                                  | 550.1                              | 1700                             | 80.8                       |
| Blower                           | 2874                                  | 544.8                              | 1681                             | 194.4                      |
| Electric motor                   | 2817                                  | 532.9                              | 1644                             | 203.9                      |
| Fan + Blower                     | 2851                                  | 540.0                              | 1666                             | 272.8                      |
| Fan + Electric Motor             | 2795                                  | 527.9                              | 1627                             | 272.8                      |
| Blower + Electric<br>Motor       | 2760                                  | 520.1                              | 1607                             | 366.0                      |
| Fan + Blower +<br>Electric Motor | 2723                                  | 512.3                              | 1577                             | 424.0                      |
|                                  |                                       |                                    |                                  |                            |

From the calculation results of the table above, it can be seen that the 26 Kg flywheel is efficient with a result of 0.27%. While the flywheel with a mass of 28 Kg produces 0.24% and 54 kg produces 0.26%.

3.1.4 The relationship between input and output power through efficiency

| Delta                               | Flywhee  | Flywheel 26 Kg |          | Flywheel 28 Kg |          | Flywheel 54 Kg |  |
|-------------------------------------|----------|----------------|----------|----------------|----------|----------------|--|
| Burden                              | $P_{in}$ | Pout           | $P_{in}$ | Pout           | $P_{in}$ | Pout           |  |
| Fan                                 | 895.3    | 81.3           | 876.9    | 81.6           | 904.5    | 80.8           |  |
| Blower                              | 1014     | 193.6          | 976.4    | 190.2          | 1018     | 194.4          |  |
| Electric motor                      | 1254     | 205.9          | 1236     | 203.9          | 1256     | 203.9          |  |
| Fan + Blower                        | 1105     | 272.1          | 1174     | 267.3          | 1107     | 272.8          |  |
| Fan + Electric<br>Motor             | 1331     | 273.4          | 1413     | 269.1          | 1343     | 272.8          |  |
| Blower +<br>Electric Motor          | 1469     | 367.6          | 1558     | 357.2          | 1479     | 366.0          |  |
| Fan + Blower<br>+ Electric<br>Motor | 1561     | 425.7          | 1698     | 408.0          | 1582     | 424.0          |  |
| $\eta$ %(efficiency)                | 0.2      | 27             | 0.       | 24             | 0        | .26            |  |

 Table 7. Effect of flywheel on output power

| The calculations are | then | analyzed, | as illustrated in |
|----------------------|------|-----------|-------------------|
| Figure 1.            |      |           |                   |





From the graph above, it can be seen that the mass of the flywheel affects the rotation of the shaft, where it is known that the mass of the flywheel 26 kg and 54 kg is almost the same, namely at 523.1 and 521.9 rpm with a difference of 1.2 rpm, while the weight of the flywheel is 28 kg with a result of 510 rpm. The influence of flywheel weight on the input of the electric motor is illustrated in Figure 2.



Figure 2. Effect of flywheel weight on electricity consumption

From the results of the graphic analysis above, it can be seen that the electric motor input at a flywheel weight of 26 kg reaches 1469 W, at a flywheel weight of 28 kg it increases to 1558 W and at a flywheel weight of 54 kg it decreases to 1479 W. This analysis is carried out to measure the power capacity of the electric motor with the addition of flywheel mass.

The analysis of the power output capability of an electric generator in relation to the load is illustrated in Figure 3.



Figure 3. Effect of flywheel weight on electrical power output in generator

The test results and the accompanying graph indicate that the optimal output power is achieved with a flywheel weighing 26 kg, producing 367.6 W. In comparison, the 28 kg flywheel generates a power output of 357.2 W, while the 54 kg flywheel achieves 366 W. Therefore, the flywheel weighing 26 kg is identified as the optimal choice for power output.

Additionally, based on the analysis of the three graphs and the calculation results, the appropriate flywheel for the power generator engine is determined by considering the generator's requirements, such as high shaft rotation, the duration of shaft rotation, and the power generated by the shaft. It has been concluded that the 26 kg flywheel is the best option due to its capability to produce both high shaft rotation and optimal power output.

#### 4. CONCLUSION

Based on the results of research and discussion regarding the utilization of flywheel-based electric generators with inertial loads to produce optimal output power, it can be concluded:

- (1) The results of the design of the utilization of flywheel-based generators contain 3 series of components with the initial component for the electric motor then transmitted to the flywheel then transmitted to the electric generator. The use of a flywheel with a mass of 26 kg with a generator output power of 367.6 W, for a flywheel mass of 28 kg produces a generator output power of 357.2 W and for a flywheel mass of 54 kg produces an electric generator output power of 366 W, so it can be concluded that the optimal power in this study uses a flywheel mass of 26 kg.
- (2) The function of the flywheel has a major influence on the rotation of the shaft. This study provides an overview of how load changes affect the performance of an electric motor in terms of rotational speed and power output where the Flywheel is used to store rotational energy and help maintain rotational stability. The generator is connected to convert mechanical energy into electrical energy.

#### REFERENCES

- 1. Yapeth A, Aryamanggala. Analisis pengaruh variasi flywheel terhadap energi kinetik yang mampu disimpan oleh flywheel pada sistem, electro-mechanical kers. Surabaya: Institut Teknologi Sepuluh November. 2011.
- 2. Faizun MM, Basuki HA, Mulyadi S. Analisis penyerapan energi kinetic pada berbagai variasi kecepatan dan inersia flywheel. J. Rekayasa Mesin. 2014;5(3): 271-4.
- 3. Safitri R. Desain sinkronisasi inverter pada grid satu fasa metode zero crossing. Jurusan Teknik Elektro Universitas Syiah Kuala. 2016.
- 4. Soebyakto. Protoype pembangkit listrik tenaga ombak system osilator. 2014.