

VANOS IOURNAL OF MECHANICAL ENGINEERING EDUCATION

http://jurnal.untirta.ac.id/index.php/vanos ISSN 2528-2611, e-ISSN 2528-2700 Volume 8, Number 2, November 2023, Pages 110-120

Application of Augmented Reality (AR) In Vocational Education: A Systematic Literature Review

Siddiq Darmawan¹, Mumu Komaro²

^{1,2}Postgraduate School, Universitas Pendidikan Indonesia, Indonesia Dr. Setiabudi Street No. 229 Bandung, West Java, Indonesia

Corresponding author: siddiqdarmawan@upi.edu

Received: 20 June 2023. Accepted: 26 September 2023. Published: 28 November 2023

ABSTRACT

In education, Augmented Reality has been widely used to complement the standard curriculum. This article aims to examine how the application, and impact of the use of AR in Vocational Education. The Systematic Literature Review method is used to identify, study, evaluate, and interpret Augmented Reality in vocational education. Research data were identified by help of the PRISMA 2020 form. Article was collected from Science Direct database. There were 454 articles. After being selected using inclusion and exclusion criteria, the data used were 14 articles. The results of the study reveal that AR is applied in learning as an innovative learning medium, a new approach to learning to improve students' understanding of knowledge, and skills and provide a concrete learning experience. The integration of AR in education has the impact of increasing students' understanding and learning experience, promoting positive attitudes, making the learning process fun and interesting and learning efficiency.

Keywords: Augmented Reality, Teaching, Learning, Vocational Education

INTRODUCTION

This rapid development of technology makes most students who are still learning by listening to subject matter delivered by the teacher or by just reading books often feel boring for students [1]. With the rapid development of technology today, learning methods as usual are not fun nowadays [2].

Augmented Reality is a technology that can be applied in by several area including education [3]. The integration of technology in the learning process has emerged a lot to create fun but effective learning [4]. One of them is the use of augmented reality in learning. In its development, augmented reality is used as a learning medium to explain information so that it can be accepted and also provide interaction in the learning process [5]

Augmented Reality (AR), is a technology that combines two-dimensional and or threedimensional virtual objects into a real environment and then projects these virtual objects in reality in real-time [6]. This AR technology allows users to see virtual objects added to the real world with contextual layers of information [7]. In the world of education, AR has been widely used to standard complement curricula. Text. graphics, video, and audio can be superimposed into a student's real-time environment that can provide different experiences to students [8].

Bibliometric analysis of the use and development of augmented reality in the world of education has been carried out by a group of researchers who took sources from 2015 to 2021. The study concluded that augmented reality is not only used in the industrial world but has also been applied in vocational education [9], [10]. The use of augmented reality in recent years has already resulted in the development of technical skills in education. Research shows that the use of augmented reality in education can increase students' awareness of the knowledge of twodimensional objects depicted through augmented reality into three-dimensional objects [11]. Research on the use of augmented reality learning media in schools can have a significant impact on students' ability to understand learning concepts [12].

The purpose of this piece of work is to examine the implementation and impact of augmented reality in vocational education.

RESEARCH METHOD

Systematic literature reviews are methods of identifying, evaluating, and interpreting all research related to a particular topic that is available and relevant to answer a particular research question or topic area, or phenomenon of interest by transparently and including all evidence and assessing its quality [13]. This article was created using the SLR method to examine the application of Augmented Reality in Vocational Education.

At the beginning of the review, the research question is spelled out as a goal that must be answered. The database selected for the search is then indicated, as well as search keywords, and criteria followed for the evaluation and selection of studies. Finally, we introduce the publication included at the end of the process [14].

1. Search Strategy

The data in this literature review, Article is sourced from the Science Direct database. Terms - selected terms searched in the title, keywords, and abstract of the article. In this systematic review, the search strings used are: "augmented reality AND education", "augmented reality AND learning", and "augmented reality AND teaching".

2. Study Selection

The study selection process is an iterative and incremental process, which is divided into several stages with different activities carried out. The search was carried out to obtain articles on the results of research on augmented reality in the world of education. The initial search yielded 454 articles.

3. Inclusion and Exclusion Criteria

Inclusion and exclusion criteria should be applied in any study. Inclusion and exclusion criteria are established to select relevant studies to obtain answers to the research questions asked. Inclusion and exclusion criteria

Table 1. Inclusion and exclusion criteria

	Inclusion		Exclusion
a.	Research relating	a.	Research related to
	to augmented		virtual reality or
	reality for		mixed reality
	educational or		
	vocational learning		
	purposes	b.	Research articles
b.	Research articles		not published
	published between		between 2018 -
	2018 - 2022		2022

c.	Research articles	c.	The article was
	are written in		written not in
	English		English
d.	Open access to	d.	Research articles
	research articles or		cannot be
	can be downloaded		downloaded for the
	the full version		full version
e.	The research	e.	The article is not a
	follows the		literature review,
	appropriate		review and
	structure and		bibliometric
	research methods		research

First of all, 454 papers were reviewed against inclusion and exclusion criteria, so 154 articles were duplicates, and 35 articles needed to be deleted because they were reviewed and bibliometric. Then the 265 articles were further read and reviewed with inclusion and exclusion criteria, 15 articles were relevant to answering research questions. This data extraction procedure is represented through the PRISMA 2000 pipeline [15].

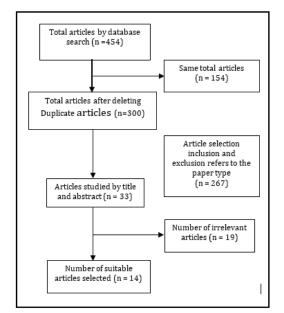


Figure 1. Article selection process

112 | VANOS Journal Of Mechanical Engineering Education Volume 8, Number 2, November 2023

Siddiq Darmawan, Mumu Komaro

After selection, the articles used in this

study are as in the following table:

Table 2. Selected articles		
Writer	Heading	Year
Mourtzis, Dimitris, Zogopoulos , Vasilios, Vlachou, Ekaterini	AugmentedRealitysupportedProductDesign towardsIndustry4.0: a TeachingFactoryparadigm	2018
Often, Adrian Trandabăţ, Diana	EnhancingtheAttractivenessofLearningthroughAugmented Reality	2018
Chang, Shao-Chen Hwang, Gwo-Jen	Impacts of an augmentedreality-basedflippedlearningguidingapproach onstudents'scientificprojectperformanceandperceptionsstate	2018
Sorko, Sabrina Romina Brunnhofer , Magdalene	Potentials of Augmented Reality in Training	2019
Yip, Joanne Wong, Sze- Ham Pick, Kit- Lun Chan, Kannass Wong, Ka- Hing	Improving the quality of teaching and learning in classes by using augmented reality video	2019
Scaravetti, Dominique Doroszews ki, Dominique	Augmented Reality experiment in higher education, for complex system appropriation in mechanical design	2019
Mourtzis, Dimitris Siatras, Vasilis Angelopoul os, John Panopoulos , Nikos	An Augmented Reality Collaborative Product Design Cloud-Based Platform in the Context of Learning Factory	2020
Sharma, Bhanu Mantri, Archana	Assimilating Disruptive Technology: A New Approach of Learning Science in Engineering Education	2020
Pranoto, Hady Panggabea n, Francisco	Increase The Interest in Learning by Implementing Augmented Reality: Case	2019

Maruli	studies studying rail transportation	
Kao, G. Y.M., & Ruan, C. A	Designing and evaluating a high interactive augmented reality system for programming learning	2022
Kostov, G., & Wolfartsbe rger, J	Designing a Framework for Collaborative Mixed Reality Training	2022
Solmaz, S., Dominguez Alfaro, J. L., Santos, P., Van Puyvelde, P., & Van Gerven, T	A practical development of engineering simulation-assisted educational AR environments	2021
Conley, Q., Atkinson, R. K., Nguyen, F., & Nelson, B.C	Leveraging augmented reality to teach probability and sampling. Computers & Education	2020
Agrawal, Richa Pillai, Jayesh S.	Augmented Reality Application in Vocational Education: A Case of Welding Training	2020

RESULT AND DISCUSSION

In the results and discussion section, the researcher will complete the research questions with several answers obtained from the literature review process.

1. How is the Application of Augmented Reality in Vocational Education?

The following table describes the application of Augmented Reality based on selected articles:

Table 3. Table of applications of AR in	
vocational education	

No.	Heading	Application of AR in
		Vocational Education
1	Augmented	Application of advanced
	Reality	visualization techniques
	supported	in product design
	Product Design	
	towards	
	Industry 4.0: a	
	Teaching	
	Factory	

113 | VANOS Journal Of Mechanical Engineering Education Volume 8, Number 2, November 2023

	paradigm			New Approach of Learning	technology. A marker- based AR application
2	Enhancing the Attractiveness of Learning through Augmented Reality	To improve communication and collaboration skills		Science in Engineering Education	called AROhm has been developed that can make students learn in an augmented Hands-on way to give them a new and concrete learning
3	Impacts of an augmented reality-based flipped learning guiding approach on students' scientific project performance and perceptions	Augmented Reality (AR) based learning to develop flipped learning systems and test the effectiveness of the proposed approach	9	Increase The Interest in Learning by Implementing Augmented Reality: Case studies studying rail transportation	experienceApplicationofaugmentedrealitytechnologyinthelearningprocess.Thecasestudyusedinpaperistheimplementationofaugmentedrealityinsubjectsstudiedrelated
4	Potentials of Augmented Reality in Training Improving	As an innovative learning medium that demonstrates several use cases and optimizes education and training to meet the needs of digitalization more successfully Improving students'	10	Designing and evaluating a high interactive augmented reality system for programming learning	to railway technology. To find a solution to make the concept of programming more real.
J	quality of teaching and learning in classes by using augmented reality video	learning experience and improving their understanding of complex issues by incorporating mobile augmented reality (AR) applications into sewing workshops where threading tasks are performed to facilitate better learning	11	Designing a Framework for Collaborative Mixed Reality Training A practical	To propose methods to extend collaborative extended reality (XR) applications to various platforms to support collaborative learning, but also other types of applications such as collaboration and remote maintenance Engineering simulation
6	Augmented Reality experiment in higher education, for complex system appropriation in mechanical design	To visualize design or simulation models and apply real system manipulations, related to various representations, especially for students who do not have technological skills		development of engineering simulation- assisted educational AR environments	with AR/VR education is still challenging and requires expertise from various disciplines throughout technical development. Case studies were developed to teach chemical engineering concepts using the liquid soap
	An Augmented Reality Collaborative Product Design Cloud-Based Platform in the Context of Learning Factory	customization, and visualization with the use of AR will also be developed to gather useful insights about the skills and competencies acquired by the participants	13	Leveraging augmented reality to teach probability and sampling. Computers &	synthesis process during the COVID-19 Pandemic Explore ways for students to learn basic statistical reasoning skills authentically and interestingly
8	Assimilating Disruptive Technology: A	Elaborating the understanding of ohm's law using AR	14	Education Augmented Reality	AR applications are designed and developed

114 | VANOS Journal Of Mechanical Engineering Education Volume 8, Number 2, November 2023

Siddiq Darmawan, Mumu Komaro

Application	in	to provide welding
Vocational		knowledge and skills
Education:	Α	and training
Case of Weld	ling	-
Training	U	

The table above shows the application of augmented reality in vocational education from selected journals. From this table, it can be concluded that 6 articles show the balance of AR in education generally aimed at improving students' knowledge, skills, and learning experience in more interesting and different ways ([11], [16], [17], [18], [19], [20]). In its use in schools 5 articles show AR is integrated into the learning process as an interactive learning medium [21], [1], [22], [23], [24]. While the other 3 articles show the application of AR complementing the new approach to learning [25], [26], [27]. The application of AR in learning can improve the student learning experience through interactive learning media that are applied with various learning methods.

2. How does the Use of Augmented Reality in Vocational Education Impact?

The following table explains the impact of using augmented reality in vocational education based on selected articles:

Table 4. Impact of the use of AR in VocationalEducation

	ation	
No.	Heading	Impact of AR Use
1	Augmented	By using Augmented
	Reality	Reality, Teaching Factory
	supported	participants have real-
	Product	world experience of
	Design	scaling the insights of the
	towards	products they are
	Industry 4.0: a	designed and can interact
	Teaching	with. the assembly of the
	Factory	final product is carried
	paradigm	out 10% faster
2	Enhancing the	The use of augmented
	Attractiveness	reality to improve

	ľ	
	of Learning	communication and
	through	collaboration skills
	Augmented	between children,
	Reality	especially children with
		autism, and game-based
		student evaluations in
		various teaching areas,
		allows for a stress-free
		testing environment
3	Impacts of an	AR-based flipped
	augmented	learning is not only
	reality-based	beneficial for students in
	flipped	terms of improving their
	learning	project performance, but
	guiding	also increases learning
	approach on	motivation, critical
	students'	thinking tendencies, and
	scientific	the self-efficacy of their
	project	group
	performance	
	and	
	perceptions	
4	Potentials of	The integration of AR
	Augmented	technology in training
	Reality in	and further development
	Training	leads to significant cost
		reductions
5	Improving	These findings are
	quality of	consistent with the post-
	teaching and	test value and the time it
	learning in	takes to learn the
	classes by	threading task. Some
	using	feedback items
	augmented	demonstrate higher
	reality video	learning efficiency with
		the use of AR video
6	Augmented	Assistance in follow-up
	Reality	procedures (handling
	experiment in	operations in practice
	higher	sessions or
	education, for	assembly/disassembly
	complex	operations). Here, AR is
	system	used as an educational
	appropriation	support tool and
	in mechanical	introduces students to
	design	technology relevant to
		the industry.
7	An	The proposed application
	Augmented	allows the utilization of
	Reality	different platforms to
	Collaborative	suit easier
	Product	implementation in any
	Design Cloud-	industrial environment at
	Based	a low resource cost. Thus,
	Platform in	breaking the boundary
	the Context of	between the device
	Learning	utilization of similar
	Factory	platforms, the
		application's proposed

115 VANOS Journal Of Mechanical Engineering Education
Volume 8, Number 2, November 2023

ISSN 2528-2611, e-ISSN 2528-2700

		collaborative design combines most of the existing devices in a more realistic collaboration experience
8	Assimilating Disruptive Technology: A New Approach of Learning Science in Engineering Education	Theme-based projects facilitate students to think outside the curriculum, and industrial projects help them to adjust to industry expectations. Results from the review of the technical expertise and documentation of the expert committee are enhanced. Competent students are allowed to continue their 6 th - semester project as an institute research project (IRP) The vision of the IRP is to shape students with industry expectations and push their technical skills toward product
9	Increase The Interest in Learning by Implementing Augmented Reality: Case studies studying rail transportation	The application of augmented reality technology in learning materials helps the learning process and increases the impressive and fun factor in the learning process and makes the learning process more interesting. The application of Augmented Reality in learning materials provides more information about the object being studied, information about the shape, and texture, and provides more visualization of the object.
10	Designing and evaluating a high interactive augmented reality system for programming learning	object.The students in the highinteractive group achieveamorepositiveexperience in assemblingpuzzle cards to learn toprogramAR-basedinstruction, especially inthe high interactive ARmode, helpingstudentsimprovetheir

		programming performance, get higher learning motivation, reduce their cognitive load, and obtain a high level of technological acceptance
11	Designing a Framework for Collaborative Mixed Reality Training	Gain useful insights into collaborative training and serve as a good starting point for future projects
12	A practical development of engineering simulation- assisted educational AR environments	Engineering stimulation with AR can facilitate versatile and sustainable educational tools for use in an active learning environment
13	Leveraging augmented reality to teach probability and sampling. Computers & Education	AR also had a positive impact on participants' perceptions of engagement. Thus, it will be strategic to continue to focus on the relationship between learning acquisition and engagement for research ideas involving the design and implementation of AR
14	Augmented Reality Application in Vocational Education: A Case of Welding Training	The final product is a mobile application that uses AR marker-based which can be used on Android phones

The table above shows the impact of augmented reality in vocational education from selected journals. From the table, it can be concluded that the impact of implementing AR in the world of education is very positive. The use of AR in learning can increase student understanding and provide a concrete learning experience [21], [22], [18], promoting a positive attitude [25], [26], [16], [27], [17] and [24], the learning process becomes fun and interesting [1] as well as efficiency in learning [17], [19], [23] and [20]. So the impact of applying AR in vocational education is to provide a concrete learning experience to students, the learning process becomes interesting and fun, a positive attitude arises and efficiency occurs in learning.

The impact of applying augmented reality to learning is related to student. The results of a pilot study show that the proposed teaching scheme significantly improves learning motivation, student creativity, and the teaching of creative design [28], After AR training, it showed superior total scores and performance compared to conventional training (student performance) [29], The implementation results indicate the impact of the learning environment on students' scientific knowledge and attitude change [30], and learning effectiveness [31]. Not all research has a significant impact, and the use of augmented reality in research may not show a significant impact [32]. This has a huge impact on learning,

Limitations

This article describes the implementation of Augmented Reality in vocational education. The specified articles are downloaded from the Science Direct database in the range of 2018 – 2022. Selected articles are research articles not reviewed articles or bibliometric studies.

CONCLUSION

The application of augmented reality in education as a whole is an example of how schools are addressing the ever-evolving technologies in the industry and ensuring students, especially from vocational education compete with the competencies available in the job market and set by the industry. Traditional learning carried out in the classroom is no longer fully effective in terms of conveying information and materials to students and is considered a method that does not contribute to productivity and instills learning motivation in students. Meanwhile, the application of virtual learning defines the variety of technology and supports educational strategies in promoting independent learning for students, increasing their productivity, and engaging them with effective learning. In addition to extensive online information, students can explore unlimited valid resources and introductions to online learning that contribute to improved collaboration between students overall improve clear ways of and communication and increase self-confidence. Innovations in learning strategies with augmented reality integration introduce simple learning and flexible time and location engagement where these strategies are available for distance learning and require only low investment.

Overall. modern strategies of а combination of technologies such as augmented reality implanted in the classroom promote better and more conducive learning compared to traditional learning and thus improve student achievement academically and intellectually.

REFERENCES

- [1] H. Pranoto and F. M. Panggabean, "Increase The Interest In Learning By Implementing Augmented Reality: Case studies studying rail transportation.," Procedia Comput. Sci., vol. 157, pp. 506– 513, 2019, doi: https://doi.org/10.1016/j.procs.2019.09 .007.
- [2] P. Hartanto and J. Suprapmanto, Proceedings of the International Conference on Education, Humanities, Social Science (ICEHoS 2022), vol. 763. Springer Nature, 2023.
- [3] H.-K. Wu, S. W.-Y. Lee, H.-Y. Chang, and J.-C. Liang, "Current status, opportunities and challenges of augmented reality in education," Comput. \& Educ., vol. 62, pp. 41–49, 2013.
- [4] F. J. Sandoval-Henr\'\iquez and M. G. Badilla-Quintana, "Measuring stimulation and cognitive reactions in middle schoolers after using immersive technology: Design and validation of the TINMER questionnaire," Comput. \& Educ., vol. 166, p. 104157, 2021.
- [5] V. M. Herbert et al., "Developing a Smartphone App With Augmented Reality to Support Virtual Learning of Nursing Students on Heart Failure," Clin. Simul. Nurs., vol. 54, pp. 77–85, 2021, doi: https://doi.org/10.1016/j.ecns.2021.02. 003.
- [6] J. M. Krüger, K. Palzer, and D. Bodemer, "Learning with augmented reality: Impact of dimensionality and spatial abilities," Comput. Educ. Open, vol. 3, p. 100065, 2022, doi: https://doi.org/10.1016/j.caeo.2021.10 0065.
- [7] M. B. Ibáñez and C. Delgado-Kloos, "Augmented reality for STEM learning: A

systematic review," Comput. Educ., vol. 123, pp. 109–123, 2018, doi: 10.1016/j.compedu.2018.05.002.

- [8] M. Belani and A. Parnami, "Augmented Reality for Vocational Education Training in K12 Classrooms," in 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 2020, pp. 317–320, doi: 10.1109/ISMAR-Adjunct51615.2020.00090.
- [9] J. Hong, "How can a design-based research methodology that utilises Mixed-Reality (MR) Technologies be utilized to effectively enhance learning for authentic, high-risk situations?," Pacific J. Technol. Enhanc. Learn., vol. 2, no. 1, 2019, doi: 10.24135/pjtel.v2i1.25.
- [10] P. J. K. Reddy, "New horizons for learning: Augmented reality in education," in Innovating with Augmented Reality: Applications in Education and Industry, 2021.
- [11] R. Agrawal and J. Pillai, "Augmented Reality Application in Vocational Education: A Case of Welding Training," pp. 23–27, Nov. 2020.
- [12] A. Aprinaldi, Y. Rahmawati, and M. Komaro, "Implementation of Augmented Reality (AR) android based in learning," J. Phys. Conf. Ser., vol. 1402, no. 7, p. 77045, 2019, doi: 10.1088/1742-6596/1402/7/077045.
- [13] S. Keele and others, "Guidelines for performing systematic literature reviews in software engineering." Technical report, ver. 2.3 ebse technical report. ebse, 2007.
- [14] Y. Zhao, A. M. Pinto Llorente, and M. C. Sánchez Gómez, "Digital competence in higher education research: A systematic literature review," Comput. Educ., vol. 168, no. August 2020, 2021, doi: 10.1016/j.compedu.2021.104212.
- [15] M. J. Page et al., "The PRISMA 2020 statement: An updated guideline for reporting systematic reviews," BMJ, vol. 372, 2021, doi: 10.1136/bmj.n71.
- 118 | VANOS Journal Of Mechanical Engineering Education Volume 8, Number 2, November 2023

- [16] A. Iftene and D. Trandabăţ, "Enhancing the Attractiveness of Learning through Augmented Reality," Procedia Comput. Sci., vol. 126, pp. 166–175, 2018, doi: https://doi.org/10.1016/j.procs.2018.07 .220.
- [17] D. Mourtzis, V. Siatras, J. Angelopoulos, and N. Panopoulos, "An Augmented Reality Collaborative Product Design Cloud-Based Platform in the Context of Learning Factory," Procedia Manuf., vol. 45, pp. 546–551, 2020, doi: https://doi.org/10.1016/j.promfg.2020. 04.076.
- [18] B. Sharma and A. Mantri, "Assimilating Disruptive Technology: A New Approach of Learning Science in Engineering Education," Procedia Comput. Sci., vol. 172, pp. 915–921, 2020, doi: https://doi.org/10.1016/j.procs.2020.05 .132.
- [19] S. Solmaz, J. L. Dominguez Alfaro, P. Santos, P. Van Puyvelde, and T. Van Gerven, "A practical development of engineering simulation-assisted educational AR environments," Educ. Chem. Eng., vol. 35, pp. 81–93, 2021.
- [20] J. Yip, S.-H. Wong, K.-L. Yick, K. Chan, and K.-H. Wong, "Improving quality of teaching and learning in classes by using augmented reality video," Comput. Educ., vol. 128, pp. 88–101, 2019, doi: https://doi.org/10.1016/j.compedu.201 8.09.014.
- [21] D. Mourtzis, V. Zogopoulos, and E. Vlachou, "Augmented Reality supported Product Design towards Industry 4.0: a Teaching Factory paradigm," Procedia Manuf., vol. 23, pp. 207–212, 2018, doi: https://doi.org/10.1016/j.promfg.2018. 04.018.
- [22] D. Scaravetti and D. Doroszewski, "Augmented Reality experiment in higher education, for complex system appropriation in mechanical design," Procedia CIRP, vol. 84, pp. 197–202, 2019, doi: https://doi.org/10.1016/j.procir.2019.0 4.284.

- [23] S. R. Sorko and M. Brunnhofer, "Potentials of Augmented Reality in Training," Procedia Manuf., vol. 31, pp. 85–90, 2019, doi: https://doi.org/10.1016/j.promfg.2019. 03.014.
- [24] G. Y.-M. Kao and C.-A. Ruan, "Designing and evaluating a high interactive augmented reality system for programming learning," Comput. Human Behav., vol. 132, p. 107245, 2022.
- [25] S.-C. Chang and G.-J. Hwang, "Impacts of an augmented reality-based flipped learning guiding approach on students' scientific project performance and perceptions," Comput. Educ., vol. 125, pp. 226–239, 2018, doi: https://doi.org/10.1016/j.compedu.201 8.06.007.
- [26] Q. Conley, R. K. Atkinson, F. Nguyen, and B. C. Nelson, "MantarayAR: Leveraging augmented reality to teach probability and sampling," Comput. Educ., vol. 153, p. 103895, 2020.
- [27] G. Kostov and J. Wolfartsberger, "Designing a Framework for Collaborative Mixed Reality Training," Procedia Comput. Sci., vol. 200, pp. 896– 903, 2022.
- [28] X. Wei, D. Weng, Y. Liu, and Y. Wang, "Teaching based on augmented reality for a technical creative design course," Comput. \& Educ., vol. 81, pp. 221–234, 2015.
- [29] A. S. Rai, A. S. Rai, E. Mavrikakis, and W.
 C. Lam, "Teaching binocular indirect ophthalmoscopy to novice residents using an augmented reality simulator," Can. J. Ophthalmol., vol. 52, no. 5, pp. 430–434, 2017.
- [30] H.-Y. Chang, Y.-S. Hsu, H.-K. Wu, and C.-C. Tsai, "Students' development of socioscientific reasoning in a mobile augmented reality learning environment," Int. J. Sci. Educ., vol. 40, no. 12, pp. 1410–1431, 2018.
- [31] P. Sommerauer and O. Müller, "Augmented reality in informal learning environments: A field experiment in a
- 119 | VANOS Journal Of Mechanical Engineering Education Volume 8, Number 2, November 2023

mathematics exhibition," Comput. \& Educ., vol. 79, pp. 59–68, 2014.

[32] T.-C. Hsu, "Learning English with augmented reality: Do learning styles matter?," Comput. \& Educ., vol. 106, pp. 137–149, 2017.