Green synthesis of Ag nanoparticles based on Moringa Oleifera to increase organic dye D205 absorbance on ZnO nanorod electrode
Abstract
Green synthesis of AgNPs using Moringa Oleifera extract has many advantages, including low toxicity, relatively low cost, environmentally friendly materials, and the availability of easily obtainable materials. AgNPs also have the advantage of enhancing light absorption in the visible region due to the occurrence of an optical phenomenon known as Localized Surface Plasmon Resonance (LSPR). In this study, AgNPs were composited with the organic dye D205 to examine the effect of AgNPs composites on the increased absorbance of the organic dye D205 on ZnO nanorod electrodes and its influence on the material's band gap. The method used in this research is the green synthesis of AgNPs by reducing Moringa Oleifera extract with the reducer AgNO3, which produces AgNPs powder. Then, in this study, ZnO nanorod electrodes were synthesized using the hydrothermal method. After that, the ZnO nanorod electrode was immersed with the organic dye D205, which was composited with AgNPs. The variation in this study lies in the variation of AgNPs composites at 0 wt% and 10 wt%. Sample characterization was performed using XRD, SEM, and UV-Vis. This study shows that the crystal size of AgNPs is 34 nm, and the maximum diffraction peak is at 2θ = 32.16˚ on the hkl (122) plane. The SEM results show an average diameter of AgNPs of 85 nm, with EDX indicating an atomic weight of Ag compound of 79%. The absorbance values in this study from the variations of AgNPs composites and organic dyes at 0 wt% and 10 wt% were 321 nm and 325 nm, respectively. The Band gap values of the AgNPs and organic dye composite variations at 0 wt% and 10 wt% are 3.69 eV and 2.99 eV, respectively. The research results show that the AgNPs composite with the organic dye D205 successfully increased absorbance and reduced the material's band gap by about 0.7 eV. Thus, the AgNPs composite with the organic dye D205 has the potential to improve efficiency in ZnO nanorod-based DSSC applications.
Keywords
Full Text:
PDF (91-103)References
Abdel-Rahman, L. H., Al-Farhan, B. S., Abou El-ezz, D., Abd–El Sayed, M., Zikry, M. M., & Abu-Dief, A. M. (2022). Green biogenic synthesis of silver nanoparticles using aqueous extract of moringa oleifera: Access to a powerful antimicrobial, anticancer, pesticidal and catalytic agents. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1422–1435.
Adeyi, A., Olowookorun, T., Ajisebiola, B., Labulo, H., Adeyi, O., & Ibrahim, H. (2023). Biosynthesis, characterization and antivenom activities of Moringa oleifera silver nanoparticles: An experimental approach. Zoologist (The), 23(1), 20–30.
Amiri, M., Akbari, A., Ahmadi, M., Pardakhti, A., & Salavati-Niasari, M. (2018). Synthesis and in vitro evaluation of a novel magnetic drug delivery system; proecological method for the preparation of CoFe2O4 nanostructures. Journal of Molecular Liquids, 249, 1151–1160.
Amiri, M., Salavati-Niasari, M., Akbari, A., & Gholami, T. (2017). Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: Herbal and green sol-gel autocombustion synthesis. International Journal of Hydrogen Energy, 42(39), 24846–24860.
Aouf, D., Khane, Y., Fenniche, F., Albukhaty, S., Sulaiman, G. M., Khane, S., Henni, A., Zoukel, A., Dizge, N., & Mohammed, H. A. (2024). Biogenic silver nanoparticles of Moringa oleifera leaf extract: Characterization and photocatalytic application. Nanotechnology Reviews, 13(1), 20240002.
Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and their Antibacterial Potential. In Dose-Response (Vol. 20, Issue 2, p. 15593258221088709).
Azizah, N. (2022). GREEN SYNTHESIS NANOPARTIKEL PERAK MENGGUNAKAN BIOREDUKTOR KULIT BUAH PINANG (Areca Catechu L.) SEBAGAI ANTIBAKTERI Escherichia coli Dan Staphylococcus aureus.
C K, V., G B, K., M, H., & B K, M. (2024). A Review on Silver Nanoparticles: Synthesis Approaches, Properties, Characterization and Applications. Pharmaceutical Nanotechnology, 13. https://doi.org/10.2174/0122117385313643241010060814
De, D., & Niyas, H. (2023). Nanostructured semiconductor metal oxides for dye-sensitized solar cells. In Advances in Electronic Materials for Clean Energy Conversion and Storage Applications (pp. 223–246). Elsevier.
Diguna, L. J., Fitriani, A. D., Liasari, B. R., Timuda, G. E., Widayatno, W. B., Wismogroho, A. S., Zeng, S., Birowosuto, M. D., & Amal, M. I. (2020). Optical and photodetection properties of zno nanoparticles recovered from zn dross. Crystals, 11(1), 6.
Fabiani, V., Silvia, D., Liyana, D., & Akbar, H. (2019). Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ekstrak Daun Pucuk Idat (Cratoxlum glaucum) dengan Metode Iradiasi Microwave. Fullerene Journal of Chemistry, 4, 96. https://doi.org/10.37033/fjc.v4i2.102
Fitriany, E., Priyoherianto, A., Puspadina, V., Arif, M. R., Alfulaila, A., & Shofiyyah, M. R. (2023). Green Synthesis AgNPs menggunakan Bioreduktor Alami Ekstrak Buah Kiwi: Biosintesis, dan Karakterisasi. Justek: Jurnal Sains Dan Teknologi, 6(1), 162–169.
Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 9(23), 12944–12967.
Garibo, D., Borbón-Nuñez, H. A., de León, J. N. D., García Mendoza, E., Estrada, I., Toledano-Magaña, Y., Tiznado, H., Ovalle-Marroquin, M., Soto-Ramos, A. G., & Blanco, A. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports, 10(1), 12805.
Haris, Z., & Ahmad, I. (2024). Green synthesis of silver nanoparticles using Moringa oleifera and its efficacy against gram-negative bacteria targeting quorum sensing and biofilms. Journal of Umm Al-Qura University for Applied Sciences, 10(1), 156–167.
Hosseini, S., Sarsari, I. A., Kameli, P., & Salamati, Hjj. (2015). Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. Journal of Alloys and Compounds, 640, 408–415.
Khalid Mohamed, T., Osman Widdatallah, M., Musa Ali, M., Mubarak Alhaj, A., & AbdElmagied Elhag, D. (2021). Green synthesis, characterization, and evaluation of the antimicrobial activity of Camellia sinensis silver nanoparticles. Journal of Nanotechnology, 2021, 1–7.
Kolya, H., Kuila, T., Kim, N. H., & Lee, J. H. (2019). Bioinspired silver nanoparticles/reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol, organic dyes and act as energy storage electrode material. Composites Part B: Engineering, 173, 106924.
Kure, N., Hyuk, D. I., Danladi, E., & Dary, D. M. (2024). Plasmonic Photo-Electrode with AgNPs as Artificial Nano-Antenna for Enhanced Performance in Perovskite Solar Cells. Physics Access, 4(2), 32–39.
Kusumawati, Y., Hutama, A. S., Wellia, D. V., & Subagyo, R. (2021). Natural resources for dye-sensitized solar cells. Heliyon, 7(12).
Lin, G., Wu, M., Tang, R., Wu, B., Wang, Y., Zhu, J., Zhang, J., & Wu, W. (2024). A Surface-Enhanced Raman Scattering Substrate with Tunable Localized Surface Plasmon Resonance Absorption Based on AgNPs. Sensors, 24(17), 5778.
Maghfury, T. I., & Anggono, A. D. (2020). Analisis X-Ray Diffraction (Xrd) Pada Brazing Aluminium Seri 1000 Dan Stainless Steel Seri 304 Dengan Penambahan Serbuk Tembaga.
Meldayani, R., Iwantono, I., Rini, A. S., & Rati, Y. (n.d.). ANALISA SIFAT FISIS NANOPARTIKEL ZnO DI-DOPING Ag YANG DISINTESIS MENGGUNAKAN METODE BIOSINTESIS. Komunikasi Fisika Indonesia, 19(1), 7–10.
Miao, F., Chu, F., Sun, B., Tao, B., Zhang, P., Zang, Y., & Chu, P. K. (2022). Dye-sensitized solar cells based on Au/SnS/TiO2 sensitized by natural dye. Journal of Materials Research and Technology, 21, 704–711.
Muhammad, S., Ali, A., Shah, J., Hamza, M., Kashif, M., Khel, B. K. A., & Iqbal, A. (2023). Using Moringa oleifera stem extract for green synthesis, characterization, and anti-inflammatory activity of silver oxide nanoparticles. Natural and Applied Sciences International Journal (NASIJ), 4(1), 80–97.
Panja, S., Chaudhuri, I., Khanra, K., & Bhattacharyya, N. (2016). Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfia serpentina Benth. Asian Pacific Journal of Tropical Disease, 6(7), 549–556.
Pattanayak, D., Pal, D., Thakur, C., Kumar, S., & Devnani, G. (2021). Bio-synthesis of iron nanoparticles for environmental remediation: Status till date. Materials Today: Proceedings, 44, 3150–3155.
Pujiarti, H., Hidayat, R., & Wulandari, P. (2019). Enhanced efficiency in dye-sensitized solar cell by localized surface plasmon resonance effect of gold nanoparticles. Journal of Nonlinear Optical Physics & Materials, 28(04), 1950040. https://doi.org/10.1142/S0218863519500401
Rahayu, S., Dosi, A., & Wulandari, P. (2022). Optimization of metal nanoparticles concentration in dye solution to enhance performance of dye sensitized solar cells. 2243(1), 012090.
Rama, P., Mariselvi, P., Sundaram, R., & Muthu, K. (2023). Eco-friendly green synthesis of silver nanoparticles from Aegle marmelos leaf extract and their antimicrobial, antioxidant, anticancer and photocatalytic degradation activity. Heliyon, 9(6).
Razavi, R., Amiri, M., Alshamsi, H. A., Eslaminejad, T., & Salavati-Niasari, M. (2021). Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. Arabian Journal of Chemistry, 14(9), 103323.
Sahdiah, H., & Kurniawan, R. (2023). Optimasi Tegangan Akselerasi pada Scanning Electron Microscope–Energy Dispersive X-Ray Spectroscopy (SEM-EDX) untuk Pengamatan Morfologi Sampel Biologi. Jurnal Sains Dan Edukasi Sains, 6(2), 117–123.
Sathishkumar, A., Arun Balasubramanian, K., & Ramkumar, T. (2020). Structural characterization of ZnO, CuO and Fe2O3 nanoparticles: Evaluation of rietveld refinement. Tierarztl. Prax, 40, 1139–1154.
Siagian, S. M., Khairani, S., HS, S. C., & Tampubolon, F. R. (2022). SINTESIS DAN KARAKTERISTIK SIFAT OPTIK SEMIKONDUKTOR ZnO DAN ZnO DOPPING Cu. ORBITA: Jurnal Kajian, Inovasi Dan Aplikasi Pendidikan Fisika, 8(1), 79–83.
Tesfaye, M., Gonfa, Y., Tadesse, G., Temesgen, T., & Periyasamy, S. (2023). Green synthesis of silver nanoparticles using Vernonia amygdalina plant extract and its antimicrobial activities. Heliyon.
Venkatesham, M., Ayodhya, D., Madhusudhan, A., Santoshi Kumari, A., Veerabhadram, G., & Girija Mangatayaru, K. (2014). A novel green synthesis of silver nanoparticles using gum karaya: Characterization, antimicrobial and catalytic activity studies. Journal of Cluster Science, 25, 409–422.
Yoga Darmawan, M., Imani Istiqomah, N., Adrianto, N., Marsel Tumbelaka, R., Dwi Nugraheni, A., & Suharyadi, E. (2023). Green synthesis of Fe3O4/Ag composite nanoparticles using Moringa oleifera: Exploring microstructure, optical, and magnetic properties for magnetic hyperthermia applications. Results in Chemistry, 6, 100999. https://doi.org/10.1016/j.rechem.2023.100999
DOI: http://dx.doi.org/10.30870/gravity.v11i1.29430
Refbacks
- There are currently no refbacks.
Gravity has been indexed by:
| |
![]() ![]() ![]() ![]() ![]() ![]() |
| Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is publihed by Department of Physics Education, Universitas Sultan Ageng Tirtayasa jointly with Physical Society of Indonesia (PSI) | |
![]() | Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License Copyright © 2020, Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika. |