Tinjauan Biomedis Antiparasit Ivermectin Dalam Pengobatan COVID-19

Reqgi First Trasia

Abstract


Kondisi pandemi COVID-19 yang masih berlangsung dan potensi kemunculan varian mutasi Sars-Cov-2 yang baru mendorong Ivermectin untuk menjadi obat yang mulai diperhitungkan. Tinjauan berbasis bukti ini bertujuan untuk memaparkan mekanisme aksi Ivermectin melawan virus corona dan merangkum literatur yang tersedia dalam dua tahun terakhir. Interaksi seluler dan biomolekuler antara Ivermectin, sel hospes, dan Sars-Cov-2 dalam patogenesis COVID-19 juga akan dijelaskan detail dalam artikel ini.


Keywords


Ivermectin, COVID-19, antiparasite

Full Text:

PDF

References


Gharebaghi R, Heidary F. (2020) COVID-19 and Iran: swimming with hands tied! Swiss Med Wkly;150:w20242. https://doi.org/ 10.4414/smw.2020.20242

Kementerian Kesehatan Republik Indonesia. (2021) Data sebaran kasus COVID-19 di Indonesia per 10 Agustus 2021. https://covid19.go.id

Badan Usaha Milik Negara. (2021). https://www.merdeka.com/peristiwa/pemerintah-siapkan-45-juta-dosis-ivermectin-sebagai-obat-terapi-covid.html

Crump A, Ōmura S. (2011) Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proc Jpn Acad Ser B Phys Biol Sci; 87:13–28. https://doi.org/10.2183/pjab.87.13

Kircik LH, Del Rosso JQ, Layton AM, Schauber J. (2016) Over 25 years of clinical experience with ivermectin: an overview of safety for an increasing number of indications. J Drugs Dermatol.;15:325–32.

Kumar BS, Jeyaraman M, Jain R, Anudeep TC. (2020) A Wonder Drug in the Arsenal against COVID—19: Medication Evidence from Ivermectin. J Adv Med Med Res;32:30–37. [CrossRef]

Novac N. (2013) Challenges and opportunities of drug repositioning. Trends Pharm Sci;34:267–72.

Zaidi AK, Mobaraki PD. (2021) The mechanisms of action of Ivermectin against SARS-CoV-2: An evidence-based clinical review article. The journal of antibiotics.

ClinicalTrials.gov (2021) [Internet]. Clinicaltrials.gov. [cited 2 May 2021]. Available from: https://clinicaltrials.gov/ct2/home Home - ClinicalTrials.gov.

Ivmmeta. (2021) Ivermectin for COVID-19: real-time meta-analysis of 52 studies [Internet]. Ivmmeta.com. [cited 2 May 2021]. Available from: https://ivmmeta.com/.

López-Medina E, et al. (2021) Effect of Ivermectin on time to resolution of symptoms among adults with mild COVID-19: a randomized clinical trial. JAMA;325:1426–35. https://doi.org/10.1001/ja ma.2021.3071

Gonzalez Canga A, et al. (2008) The pharmacokinetics and interactions of ivermectin in humans–a mini-review. AAPS J;10:42–6. https://doi.org/10.1208/s12248-007-9000-9

Edwards G, Dingsdale A, Helsby N, Orme ML, Breckenridge AM. (1998) The relative systemic availability of ivermectin after administration as capsule, tablet, and oral solution. Eur J Clin Pharm.;35:681–4.

Verrest L, Dorlo TPC. (2017) Lack of clinical pharmacokinetic studies to optimize the treatment of neglected tropical diseases: a systematic review. Clin Pharmacokinet.;56:583–606.

Klotz U, Ogbuokiri JE, Okonkwo PO. (1999) Ivermectin binds avidly to plasma proteins. Eur J Clin Pharmacol;39:607–8. https://doi. org/10.1007/BF00316107

Wu MA, Fossali T, et al. (2021) Hypoalbuminemia in COVID-19: assessing the hypothesis for underlying pulmonary capillary leakage. J Intern Med. Jan. https://doi.org/10.1111/joim.13208.

Baudou E, et al. Serious Ivermectin toxicity and human ABCB1 nonsense mutations. N. Engl J Med. 2020;383:787–9. https://doi. org/10.1056/NEJMc1917344.

Martin RJ, Robertson AP, Choudhary S. Ivermectin: an anthel- mintic, an insecticide, and much more. Trends Parasitol. 2021;37:48–64. https://doi.org/10.1016/j.pt.2020.10.005. Epub 2020 Nov 11. PMID: 33189582; PMCID: PMC7853155

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z et al. Struc- tural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020. https://doi.org/10.1016/j.cell.2020.03.045.

Wu A, Peng Y, Huang B et al. (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. https://doi.org/10.1016/j.chom.2020. 02.001

Lehrer S, Rheinstein PH. Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2. Vivo 2020;34:3023–6. https://doi.org/10.21873/invivo.12134. PMID: 32871846; PMCID: PMC7652439

Eweas AF, Alhossary AA, Abdel-Moneim AS. Molecular docking reveals Ivermectin and Remdesivir as potential repurposed drugs against SARS-CoV-2. Front Microbiol 2021;11:592908 https:// doi.org/10.3389/fmicb.2020.592908. Published 2021 Jan 25

Choudhury A, Das NC, Patra R, Bhattacharya M, Ghosh P, Patra BC, et al. Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach. Future Virol. 2021;10.2217/fvl-2020-0342. https://doi.org/10. 2217/fvl-2020-0342.

Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antivir Res. 2020;177:104760.

Rizzo E. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. Naunyn Schmiedebergs Arch Pharm. 2020;393:1153–6. https://doi.org/10.1007/s00210-020-01902-5

Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot. 2020;73:593–602. https://doi.org/10.1038/s41429-020-0336-z

Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM The FDA- approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020:104787. https://doi.org/10.1016/j. antiviral.2020.104787.

Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, et al. Structural basis and functional analysis of the SARS coronavirus nsp14- nsp10 complex. Proc Natl Acad Sci USA. 2015;112:9436–41.

Matsuyama T, Kubli SP, Yoshinaga SK, et al. An aberrant STAT pathway is central to COVID-19. Cell Death Differ. 2020;27:3209–25. https://doi.org/10.1038/s41418-020-00633-7

Seth C, Mas C, Conod A, Mueller J, Siems K, Kuciak M, et al. LongLasting WNT-TCF response blocking and epigenetic mod- ifying activities of withanolide f in human cancer cells. PLoS One. 2016;11:e0168170.

Zhang X, Song Y, Ci X, et al. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm Res. 2008;57:524–9. https://doi.org/10. 1007/s00011-008-8007-8. [PMID: 19109745]

Jiang L, Wang P, Sun YJ, Wu YJ. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB path- way. J Exp Clin Cancer Res. 2019;38:265 https://doi.org/10.1186/ s13046-019-1251-7. [PMID: 31215501]

Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load dynamics and disease severity in patients infected with SARSCoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ 2020;369:m1443.

Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect. 2020. https://doi.org/10.1016/j. jinf.2020.04.021

Kim J-H, Choi HS, Kim S-L, Lee D-S. The PAK1-Stat3 signaling pathway activates IL-6 gene transcription and human breast can- cer stem cell formation. Cancers 2019;11:1527.

Dou Q, Chen H-N, Wang K, Yuan K, Lei Y, Li K, et al. Iver- mectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res. 2016;76:4457–69.

Layhadi JA, Turner J, Crossman D, Fountain SJ. ATP evokes Ca2 + responses and CXCL5 secretion via P2X4 receptor activation in human monocyte-derived macrophages. J Immunol Balt Md 1950 2018;200:1159 https://doi.org/10.4049/jimmunol.1700965

Juarez M, Schcolnik-Cabrera A, Dueñas-Gonzalez A. The multi- targeted drug ivermectin: from an antiparasitic agent to a reposi- tioned cancer drug. Am J Cancer Res. 2018;8:317–31. Published 2018 Feb 1

Ci X, Li H, Yu Q. Avermectin exerts anti-inflammatory effect by downregulating the nuclear transcription factor kappa-B and mitogen-activated protein kinase activation pathway. Fundam Clin Pharm. 2009;23:449–55.

Yan S, Ci X, Chen N. Anti-Inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm Res. 2011;60:589–96.

Kamber Zaidi A, Dawoodi S, Pirro M, Monti M, Dehgani Mobaraki P. Key role of Annexin A2 and Plasmin in COVID-19 pathophysiology, clinical presentation and outcomes – A Review.




DOI: http://dx.doi.org/10.62870/tmj.v1i1.12134

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Tirtayasa Medical Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Manage by Faculty of Medicine, Universitas Sultan Ageng Tiryatasa

Publish by: Universitas Sultan Ageng Tiryatasa

Address : Jl. Raya Palka No.Km 3, Panancangan, Kec. Cipocok Jaya, Serang, Banten 42124, Indonesia

Lisensi Creative Commons

Tirtayasa Medical Journal (E-ISSN 2809-5111) is licensed under a Creative Commons Attribution 4.0 International License. Preserved in LOCKSS, through PKP Private LOCKSS Network program.

 View My Stats