Efek Hyperglikemia Terhadap Innate Immunity dan Kerentanan Terhadap Infeksi

Nuryani Nuryani

Abstract


Tujuan penulisan literature review ini adalah mengkaji efek status hiperglikemia terhadap system imunitas. Metode studi literature dari bulan April – Mei 2022 yang mengkaji artikel terkait hiperglikemia dan respon imunitas. Hasil studi menunjukkan pada pasien yang mengalami obesitas dan diabetes mellitus tipe 2 (T2DM), terjadi perubahan proliferasi sel T dan makrofag, serta kegagalan fungsi sel NK dan sel B yang menggambarkan abnormalitas innate dan adaptive imunity. Respon inflamasi akibat respon imunitas terhadap tingginya glukosa darah serta adanya mediator inflamasi yang dihasilkan oleh adiposity dan makrofag pada jaringan lemak. Kronik inflamasi merusak sel beta pakreas dan menyebabkan insufisiensi produksi insulin dan hiperglikemia. Hiperglikemia pada pasien diabetes menyebabkan disfungsi respon system imun, yang gagal mengontrol penyebaran invasi pathogen pada pasien diabetes. Sehingga, Pasien diabetes rentan mengalami infeksi. Secara umum pengaruh hiperglikemia menunjukkan pengaruh pada system imunitas diantaranya pada sel monosit dengan meningkatkan produksi sitokin, regulasi adesi, migrasi dan transmigrasi sel monosit, pada sel makrofag memicu peningkatan proliferasi, meningkatkan produksi sitokin dan pagositosis pada respon in vitro LPS, menghambat sekresi sitokin proinflamasi seperti TNFα dan IL-6 secara ex vivo, pada sel netrofil hiperglikemia menghambat fungsi netrofil seperti degranulasi dan menekan regulasi produksi myeloperoxidase (MPO), pada sel T hiperglikemia menekan proliferasi sel T kulit, menghambat netrofil pada infiltrasi jaringan. peningkatan risiko infeksi saluran pernafasan bawah seperti tuberculosis dan pneumonia, infeksi saluran kemih, infeksi jaringan ikat dan kulit pada pasien diabetes akibat gangguan pada system imunitas


Keywords


hyperglykemia, innate immunity, infection

Full Text:

PDF

References


Alba-Loureiro TC, Hirabara SM, Mendonc JR¸ Curi R, and Pithon-Curi TC. 2006. Diabetes causesmarked changes infunction and metabolism of rat neutrophils. Journal of Endocrinology. 188 (2): 295–303.

Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. 2021. Type 2 Diabetes and its impact on the immune sistem. Current diabetes reviews. 16: 442 – 449.

Berrou J, Fougeray S, Venot M, et al. 2013. Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes. PLoS One. 8(4): e62418.

Chao WC, Yen CL, Wu YH, et al. 2015. Increased resistin may suppress reactive oxygen species production and inflammasome activation in type 2 diabetic patients with pulmonary tuberculosis infection. Microbes Infect. 17(3): 195-204.

Dasu MR, Devaraj S, Zhao L, Hwang DH, and Jialal I. 2008. High glucose induces toll-like receptor expression in human monocytes Mechanism of activation. Diabetes. 57 (11): 3090–3098.

Dimitriadis G, Maratou E, Boutati E, Psarra K, Papasteriades C, and Raptis SA. 2005. Evaluation of glucose transport and its regulation by insulin in human monocytes using flow cytometry. Cytometry Part A. 64 (1): 27–33.

Devaraj S and Jialal I. 2009. Increased secretion of IP-10 from monocytes under hyperglycemia is via the TLR2 and TLR4 pathway. Cytokine. 47(1): 6–10.

Gonzalez Y, Herrera MT,Soldevila G et al. 2012. High glucose concentrations induce TNF-alpha production through the down-regulation of CD33 in primary humanmonocytes. BMC Immunology. 13(19).

Haidet J, Cifarelli V, Trucco M, and Luppi P. 2012. C-peptide reduces pro-inflammatory cytokine secretion in LPSstimulated U937 monocytes in condition of hyperglycemia. Inflammation Research. 61 (1): 27–35.

Hair PS, Echague CG, Rohn RD, Krishna NK, Nyalwidhe JO, Cunnion KM. 2012. Hyperglycemic conditions inhibit C3-mediated immunologic control of Staphylococcus aureus. J Transl Med. 10(1): 35.

Jafar N, Edriss H, Nugent K. 2016. The Effect of Short-Term Hyperglycemia on the Innate Immune Sistem. Am J Med Sci. 351(2): 201–211.

Jeschke MG. 2013. Clinical review: glucose control in severely burned patients—current best practice. Critical Care. 17 (232).

Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. 2013. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 587(14): 2241-6. http://dx.doi.org/10.1016/j.febslet.2013.05.053 PMID: 23735697.

Kumar M, Roe K, Nerurkar PV, et al. 2014. Reduced immune cell infiltration and increased pro-inflammatory mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus. J Neuroinflammation. 11(1): 80.

Leonidou L, Mouzaki A, Michalaki M, et al. 2007. Cytokine production and hospital mortality in patients with sepsis-induced stress hyperglycemia. Journal of Infection. 55 (4): 340–346.

Liu H-F, Zhang H-J, Hu Q-X, et al. 2012. Altered polarization, morphology, and impaired innate immunity germane to resident peritoneal macrophages in mice with long-term type 2 diabetes. J Biomed Biotechnol. 2012867023. http://dx.doi.org/10.1155/2012/867023 PMID: 23093868.

Mauriello CT, Hair PS, Rohn RD, Rister NS, Krishna NK, Cunnion KM. 2014. Hyperglycemia inhibits complement-mediated immunological control of S. aureus in a rat model of peritonitis. J Diabetes Res. 2014762051.

Martinez N, Ketheesan N, Martens GW, West K, Lien E, Kornfeld H. 2016. Defects in early cell recruitment contribute to the increased susceptibility to respiratory Klebsiella pneumoniae infection in diabetic mice. Microbes Infect. 18(10): 649-55.

Morano AEV, Dorneles GP, Peres A, Lira FS. 2019. The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. J Cell Physiol. 1–20.

Nandy D, Janardhanan R, Mukhopadhyay D, and Basu A. 2011. Effect of hyperglycemia on human monocyte activation. Journal of InvestigativeMedicine. 59 (4): 661–667.

Nicholson LB. 2016. The immune sistem. Essays in biochemistry. 60: 275 – 301.

Pavlou S, Lindsay J, Ingram R, Xu H, Chen M. 2018. Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunol. 19(1): 24.

Perner A, Nielsen SE, Rask-Madsen J. 2003. High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med. 29(4): 642-5.

Reinhold D, Ansorge S, Schleicher ED. 1996. Elevated glucose levels stimulate transforming growth factor-β 1 (TGF-β 1), suppress inter leukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm Metab Res. 28(6): 267-70.

Restrepo BI, Twahirwa M, Rahbar MH, Schlesinger LS. 2014. Phagocytosis via complement or Fc-gamma receptors is compromised in monocytes from type 2 diabetes patients with chronic hyperglycemia. PLoS One. 9(3): e92977.

Saini A, Liu YJ, Cohen DJ, and Ooi BS. 1996. Hyperglycemia augments macrophage growth responses to colony-stimulating factor-1. Metabolism. 45 (9): 1125–1129.

Sarigianni M, Bekiari E, Tsapas A, et al. 2011. Effect of glucose and insulin on oxidized low-density lipoprotein phagocytosis by human monocytes: a pilot study. Angiology. 62 (2): 163–166.

Stegenga ME, van der Crabben SN, Blumer RME, et al. 2008. Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia. Blood.112(1): 82-9.

Spindler MP, Ho AM, Tridgell D, et al. 2016. Acute hyperglycemia impairs IL-6 expression in humans. Immun Inflamm Dis. 4(1): 91-7. http://dx.doi.org/10.1002/iid3.97 PMID: 27042306.

Tankeshwar A. 2022. Cells of the Immune Sistem. Available online at: https://microbeonline.com/cells-of-the-immune-sistem/.

Turina M, Miller FN, Tucker CF, and Polk HC. 2006. Shortterm hyperglycemia in surgical patients and a study of related cellularmechanisms. Annals of Surgery. 243 (6): 845–851.

Qadan M, Weller EB, Gardner SA, Maldonado C, Fry DE, and Polk Jr HC. 2010. Glucose and surgical sepsis: a study of underlying immunologic mechanisms. Journal of the American College of Surgeons. 210 (6): 966–974.

Wade CE. 2008. Hyperglycemiamay alter cytokine production and phagocytosis bymeans other than hyperosmotic stress. Critical Care. 12 (5): 182.

Xiu F, Stanojcic M, Diao L, Jeschke MG. 2014. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells. International Journal of Endocrinology. 486403. 1 -10.

Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G. 2018. Role of Adaptive and Innate Immunity in Type 2 Diabetes Mellitus. Hindawi Journal of Diabetes Research. Article ID 7457269. 1 – 10.




DOI: http://dx.doi.org/10.62870/tmj.v1i2.15320

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Manage by Faculty of Medicine, Universitas Sultan Ageng Tiryatasa

Publish by: Universitas Sultan Ageng Tiryatasa

Address : Jl. Raya Palka No.Km 3, Panancangan, Kec. Cipocok Jaya, Serang, Banten 42124, Indonesia

Lisensi Creative Commons

Tirtayasa Medical Journal (E-ISSN 2809-5111) is licensed under a Creative Commons Attribution 4.0 International License. Preserved in LOCKSS, through PKP Private LOCKSS Network program.

 View My Stats