Tailoring Polymeric Nanoparticles as Nanocarriers via RAFT Polymerization

Sri Agustina

Abstract


Polymeric nanoparticles are really promising to be used as drug carriers, due to its ability to increase the aqueous solubility of drugs. Polymeric nanoparticles can regulate the drug activity by passive or active targeting to different tissues. RAFT polymerization has become the most approvable technique to synthesize polymeric nanocarriers for drug delivery. By using different RAFT agents, wide ranges of polymeric nanoparticles with various architecture and water solubility can be obtained under mild conditions.


Full Text:

PDF

References


Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., . . . Pashaei-Asl, R. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale research letters, 9(1), 247-247. doi:10.1186/1556-276X-9-247

Barner-Kowollik, C., Davis, T. P., & Stenzel, M. H. (2006). Synthesis of Star Polymers using RAFT Polymerization: What is Possible? Australian Journal of Chemistry, 59(10), 719-727. doi:http://dx.doi.org/10.1071/CH06297

Barner, L., Davis, T. P., Stenzel, M. H., & Barner-Kowollik, C. (2007). Complex Macromolecular Architectures by Reversible Addition Fragmentation Chain Transfer Chemistry: Theory and Practice. Macromolecular Rapid Communications, 28(5), 539-559. doi:10.1002/marc.200600805

Blencowe, A., Tan, J. F., Goh, T. K., & Qiao, G. G. (2009). Core cross-linked star polymers via controlled radical polymerisation. Polymer, 50(1), 5-32. doi:http://dx.doi.org/10.1016/j.polymer.2008.09.049

Boyer, C., Stenzel, M. H., & Davis, T. P. (2011). Building nanostructures using RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49(3), 551-595. doi:https://doi.org/10.1002/pola.24482

Chan, J. M., Valencia, P. M., Zhang, L., Langer, R., & Farokhzad, O. C. (2010). Polymeric nanoparticles for drug delivery. In Cancer Nanotechnology (pp. 163-175): Springer.

Cheng, Y., Xu, Z., Ma, M., & Xu, T. (2008). Dendrimers as drug carriers: Applications in different routes of drug administration. Journal of Pharmaceutical Sciences, 97(1), 123-143. doi:10.1002/jps.21079

Couvreur, P. (1988). Polyalkylcyanoacrylates as colloidal drug carriers. Critical reviews in therapeutic drug carrier systems, 5(1), 1-20.

Duong, H. T. T., Marquis, C. P., Whittaker, M., Davis, T. P., & Boyer, C. (2011). Acid Degradable and Biocompatible Polymeric Nanoparticles for the Potential Codelivery of Therapeutic Agents. Macromolecules, 44(20), 8008-8019. doi:10.1021/ma201085z

Ebrahim Attia, A. B., Ong, Z. Y., Hedrick, J. L., Lee, P. P., Ee, P. L. R., Hammond, P. T., & Yang, Y.-Y. (2011). Mixed micelles self-assembled from block copolymers for drug delivery. Current Opinion in Colloid & Interface Science, 16(3), 182-194. doi:http://dx.doi.org/10.1016/j.cocis.2010.10.003

Esfand, R., & Tomalia, D. A. (2001). Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 6(8), 427-436. doi:http://dx.doi.org/10.1016/S1359-6446(01)01757-3

Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J.-C. (2005). Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release, 109(1–3), 169-188. doi:http://dx.doi.org/10.1016/j.jconrel.2005.09.034

Gregory, A., & Stenzel, M. H. (2012). Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Progress in Polymer Science, 37(1), 38-105. doi:http://dx.doi.org/10.1016/j.progpolymsci.2011.08.004

Hadjichristidis, N., Iatrou, H., Pitsikalis, M., & Mays, J. (2006). Macromolecular architectures by living and controlled/living polymerizations. Progress in Polymer Science, 31(12), 1068-1132. doi:http://dx.doi.org/10.1016/j.progpolymsci.2006.07.002

Hadjichristidis, N., Pispas, S., Pitsikalis, M., Iatrou, H., & Vlahos, C. (1999). Asymmetric Star Polymers: Synthesis and Properties. In J. Roovers (Ed.), Branched Polymers I (Vol. 142, pp. 71-127): Springer Berlin Heidelberg.

Hadjichristidis, N., Pitsikalis, M., Pispas, S., & Iatrou, H. (2001). Polymers with Complex Architecture by Living Anionic Polymerization. Chemical Reviews, 101(12), 3747-3792. doi:10.1021/cr9901337

Hussein, Y. H. A., & Youssry, M. (2018). Polymeric Micelles of Biodegradable Diblock Copolymers: Enhanced Encapsulation of Hydrophobic Drugs. Materials (Basel, Switzerland), 11(5), 688. doi:10.3390/ma11050688

Jagur-Grodzinski, J. (2009). Polymers for targeted and/or sustained drug delivery. Polymers for Advanced Technologies, 20(7), 595-606. doi:10.1002/pat.1304

Kedar, U., Phutane, P., Shidhaye, S., & Kadam, V. (2010). Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine, 6(6), 714-729. doi:http://dx.doi.org/10.1016/j.nano.2010.05.005

Khanna, K., Varshney, S., & Kakkar, A. (2010). Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polymer Chemistry, 1(8), 1171-1185. doi:10.1039/C0PY00082E

Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1(3), 193-212.

Kreuter, J. (2014). Colloidal drug delivery systems (Vol. 66): CRC Press.

Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual review of chemical and biomolecular engineering, 1, 149-173.

McNamara, K., & Tofail, S. A. (2017). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1), 54-88.

Nishiyama, N., & Kataoka, K. (2006). Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & Therapeutics, 112(3), 630-648. doi:http://dx.doi.org/10.1016/j.pharmthera.2006.05.006

Patri, A. K., Majoros, I. J., & Baker Jr, J. R. (2002). Dendritic polymer macromolecular carriers for drug delivery. Current Opinion in Chemical Biology, 6(4), 466-471. doi:http://dx.doi.org/10.1016/S1367-5931(02)00347-2

Qiu, L., & Bae, Y. (2006). Polymer Architecture and Drug Delivery. Pharmaceutical Research, 23(1), 1-30. doi:10.1007/s11095-005-9046-2

Ragelle, H., Danhier, F., Préat, V., Langer, R., & Anderson, D. G. (2017). Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert opinion on drug delivery, 14(7), 851-864.

Raj, S., Jose, S., Sumod, U., & Sabitha, M. (2012). Nanotechnology in cosmetics: Opportunities and challenges. Journal of pharmacy & bioallied sciences, 4(3), 186.

Riess, G. (2003). Micellization of block copolymers. Progress in Polymer Science, 28(7), 1107-1170. doi:10.1016/S0079-6700(03)00015-7

Sawdon, A., & Peng, C. A. (2013). Multifunctional Polymeric Micelles for Drug Delivery and Therapeutics. Nanomedicine for Drug Delivery and Therapeutics, 438-469.

Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in biotechnology, 27(2), 82-89.

Tyrrell, Z. L., Shen, Y., & Radosz, M. (2010). Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science, 35(9), 1128-1143. doi:http://dx.doi.org/10.1016/j.progpolymsci.2010.06.003

Venkataraman, S., Hedrick, J. L., Ong, Z. Y., Yang, C., Ee, P. L. R., Hammond, P. T., & Yang, Y. Y. (2011). The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews, 63(14–15), 1228-1246. doi:http://dx.doi.org/10.1016/j.addr.2011.06.016

Wiltshire, J. T., & Qiao, G. G. (2007). Recent Advances in Star Polymer Design: Degradability and the Potential for Drug Delivery. Australian Journal of Chemistry, 60(10), 699-705. doi:http://dx.doi.org/10.1071/CH07128

Xia, Y., Yang, H., & Campbell, C. T. (2013). Nanoparticles for catalysis. Accounts of chemical research, 46(8), 1671-1672.




DOI: http://dx.doi.org/10.62870/wcej.v5i1.11875

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 World Chemical Engineering Journal

WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).

This Journal has been indexed by:

  1. Google Scholar
  2. Garuda
  3. Dimensions
  4. Crossref
  5. Open Academic Journal Index
  6. Journal Impact Factor
  7. Cite Factor 
Archives: Resources | Dimensions CrossrefJIFACTOR, Journal Indexing  

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.