Tailoring Polymeric Nanoparticles as Nanocarriers via RAFT Polymerization
Abstract
Polymeric nanoparticles are really promising to be used as drug carriers, due to its ability to increase the aqueous solubility of drugs. Polymeric nanoparticles can regulate the drug activity by passive or active targeting to different tissues. RAFT polymerization has become the most approvable technique to synthesize polymeric nanocarriers for drug delivery. By using different RAFT agents, wide ranges of polymeric nanoparticles with various architecture and water solubility can be obtained under mild conditions.
Full Text:
PDFReferences
Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., . . . Pashaei-Asl, R. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale research letters, 9(1), 247-247. doi:10.1186/1556-276X-9-247
Barner-Kowollik, C., Davis, T. P., & Stenzel, M. H. (2006). Synthesis of Star Polymers using RAFT Polymerization: What is Possible? Australian Journal of Chemistry, 59(10), 719-727. doi:http://dx.doi.org/10.1071/CH06297
Barner, L., Davis, T. P., Stenzel, M. H., & Barner-Kowollik, C. (2007). Complex Macromolecular Architectures by Reversible Addition Fragmentation Chain Transfer Chemistry: Theory and Practice. Macromolecular Rapid Communications, 28(5), 539-559. doi:10.1002/marc.200600805
Blencowe, A., Tan, J. F., Goh, T. K., & Qiao, G. G. (2009). Core cross-linked star polymers via controlled radical polymerisation. Polymer, 50(1), 5-32. doi:http://dx.doi.org/10.1016/j.polymer.2008.09.049
Boyer, C., Stenzel, M. H., & Davis, T. P. (2011). Building nanostructures using RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49(3), 551-595. doi:https://doi.org/10.1002/pola.24482
Chan, J. M., Valencia, P. M., Zhang, L., Langer, R., & Farokhzad, O. C. (2010). Polymeric nanoparticles for drug delivery. In Cancer Nanotechnology (pp. 163-175): Springer.
Cheng, Y., Xu, Z., Ma, M., & Xu, T. (2008). Dendrimers as drug carriers: Applications in different routes of drug administration. Journal of Pharmaceutical Sciences, 97(1), 123-143. doi:10.1002/jps.21079
Couvreur, P. (1988). Polyalkylcyanoacrylates as colloidal drug carriers. Critical reviews in therapeutic drug carrier systems, 5(1), 1-20.
Duong, H. T. T., Marquis, C. P., Whittaker, M., Davis, T. P., & Boyer, C. (2011). Acid Degradable and Biocompatible Polymeric Nanoparticles for the Potential Codelivery of Therapeutic Agents. Macromolecules, 44(20), 8008-8019. doi:10.1021/ma201085z
Ebrahim Attia, A. B., Ong, Z. Y., Hedrick, J. L., Lee, P. P., Ee, P. L. R., Hammond, P. T., & Yang, Y.-Y. (2011). Mixed micelles self-assembled from block copolymers for drug delivery. Current Opinion in Colloid & Interface Science, 16(3), 182-194. doi:http://dx.doi.org/10.1016/j.cocis.2010.10.003
Esfand, R., & Tomalia, D. A. (2001). Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 6(8), 427-436. doi:http://dx.doi.org/10.1016/S1359-6446(01)01757-3
Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J.-C. (2005). Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release, 109(1–3), 169-188. doi:http://dx.doi.org/10.1016/j.jconrel.2005.09.034
Gregory, A., & Stenzel, M. H. (2012). Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Progress in Polymer Science, 37(1), 38-105. doi:http://dx.doi.org/10.1016/j.progpolymsci.2011.08.004
Hadjichristidis, N., Iatrou, H., Pitsikalis, M., & Mays, J. (2006). Macromolecular architectures by living and controlled/living polymerizations. Progress in Polymer Science, 31(12), 1068-1132. doi:http://dx.doi.org/10.1016/j.progpolymsci.2006.07.002
Hadjichristidis, N., Pispas, S., Pitsikalis, M., Iatrou, H., & Vlahos, C. (1999). Asymmetric Star Polymers: Synthesis and Properties. In J. Roovers (Ed.), Branched Polymers I (Vol. 142, pp. 71-127): Springer Berlin Heidelberg.
Hadjichristidis, N., Pitsikalis, M., Pispas, S., & Iatrou, H. (2001). Polymers with Complex Architecture by Living Anionic Polymerization. Chemical Reviews, 101(12), 3747-3792. doi:10.1021/cr9901337
Hussein, Y. H. A., & Youssry, M. (2018). Polymeric Micelles of Biodegradable Diblock Copolymers: Enhanced Encapsulation of Hydrophobic Drugs. Materials (Basel, Switzerland), 11(5), 688. doi:10.3390/ma11050688
Jagur-Grodzinski, J. (2009). Polymers for targeted and/or sustained drug delivery. Polymers for Advanced Technologies, 20(7), 595-606. doi:10.1002/pat.1304
Kedar, U., Phutane, P., Shidhaye, S., & Kadam, V. (2010). Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine, 6(6), 714-729. doi:http://dx.doi.org/10.1016/j.nano.2010.05.005
Khanna, K., Varshney, S., & Kakkar, A. (2010). Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polymer Chemistry, 1(8), 1171-1185. doi:10.1039/C0PY00082E
Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1(3), 193-212.
Kreuter, J. (2014). Colloidal drug delivery systems (Vol. 66): CRC Press.
Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual review of chemical and biomolecular engineering, 1, 149-173.
McNamara, K., & Tofail, S. A. (2017). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1), 54-88.
Nishiyama, N., & Kataoka, K. (2006). Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & Therapeutics, 112(3), 630-648. doi:http://dx.doi.org/10.1016/j.pharmthera.2006.05.006
Patri, A. K., Majoros, I. J., & Baker Jr, J. R. (2002). Dendritic polymer macromolecular carriers for drug delivery. Current Opinion in Chemical Biology, 6(4), 466-471. doi:http://dx.doi.org/10.1016/S1367-5931(02)00347-2
Qiu, L., & Bae, Y. (2006). Polymer Architecture and Drug Delivery. Pharmaceutical Research, 23(1), 1-30. doi:10.1007/s11095-005-9046-2
Ragelle, H., Danhier, F., Préat, V., Langer, R., & Anderson, D. G. (2017). Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert opinion on drug delivery, 14(7), 851-864.
Raj, S., Jose, S., Sumod, U., & Sabitha, M. (2012). Nanotechnology in cosmetics: Opportunities and challenges. Journal of pharmacy & bioallied sciences, 4(3), 186.
Riess, G. (2003). Micellization of block copolymers. Progress in Polymer Science, 28(7), 1107-1170. doi:10.1016/S0079-6700(03)00015-7
Sawdon, A., & Peng, C. A. (2013). Multifunctional Polymeric Micelles for Drug Delivery and Therapeutics. Nanomedicine for Drug Delivery and Therapeutics, 438-469.
Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in biotechnology, 27(2), 82-89.
Tyrrell, Z. L., Shen, Y., & Radosz, M. (2010). Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science, 35(9), 1128-1143. doi:http://dx.doi.org/10.1016/j.progpolymsci.2010.06.003
Venkataraman, S., Hedrick, J. L., Ong, Z. Y., Yang, C., Ee, P. L. R., Hammond, P. T., & Yang, Y. Y. (2011). The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews, 63(14–15), 1228-1246. doi:http://dx.doi.org/10.1016/j.addr.2011.06.016
Wiltshire, J. T., & Qiao, G. G. (2007). Recent Advances in Star Polymer Design: Degradability and the Potential for Drug Delivery. Australian Journal of Chemistry, 60(10), 699-705. doi:http://dx.doi.org/10.1071/CH07128
Xia, Y., Yang, H., & Campbell, C. T. (2013). Nanoparticles for catalysis. Accounts of chemical research, 46(8), 1671-1672.
DOI: http://dx.doi.org/10.62870/wcej.v5i1.11875
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 World Chemical Engineering Journal
WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).
This Journal has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.