Pengaruh Kadar Air Dan Konsentrasi Metana Terhadap Unjuk Kerja Reaktor Bolak Balik Dengan Umpan Emisi Gas Tambang Batubara

Novan Prihasa, Teguh Kurniawan

Abstract


Proses ekstraksi batubara dalam setiap penambangan batubara melepaskan sejumlah emisi gas buang ke udara berupa gas metana sebesar 0,1 – 1%. Emisi gas metana pada tambang batubara merupakan salah satu kontributor efek rumah kaca dalam pemanasan global. Ketahanan gas metana berada di atmosfer rata-rata sekitar 12 tahun. Gas metana mampu menangkap panas dengan kemampuan 20 kali lipat lebih besar dari karbondioksida. Salah satu solusi yang dapat digunakan untuk mengoksidasi gas metana menjadi karbondioksida dengan konsentrasi rendah di bawah 1% adalah menggunakan Reverse Flow Reactor (RFR). Dalam penelitian ini akan dipaparkan mengenai pengaruh konsentrasi gas umpan metana, kandungan kadar air pada aliran gas umpan metana, dan pemilihan nilai switching time terhadap unjuk kerja reaktor terkait sifat auto-thermal dan kestabilan panas RFR, dengan metode simulasi pengamatan kelakuan dinamik berupa profil temperatur reaktor dan konversi metana menggunakan software FlexPDE versi 7. Nilai konsentrasi gas umpan metana berbanding lurus terhadap nilai temperatur yang dihasilkan reaktor. Sementara nilai komposisi air pada gas umpan metana dan nilai switching time berbanding terbalik terhadap nilai temperatur yang dihasilkan reaktor. Nilai konversi metana sangat dipengaruhi oleh kondisi operasi auto-thermal dan kestabilan panas dari RFR. Jika kondisi operasi auto-thermal dapat terjadi atau dengan kata lain reaktor tidak padam, maka nilai konversi metana mampu mencapai 100%.


Full Text:

PDF

References


Balakotaiah, V., Sun, Z., & West, D. H. (2019). Autothermal reactor design for catalytic partial oxidations. Chemical Engineering Journal, 374, 1403-1419.

Díaz, E., Fernández, J., Ordóñez, S., Canto, N., & González, A. (2012). Carbon and ecological footprints as tools for evaluating the environmental impact of coal mine ventilation air. Ecological indicators, 18, 126-130.

Effendy, M., Wardhono, E., & Arsana, I. (2019). Effect of intraparticle diffusion-reactions at reverse flow reactors. Cases study: Methane catalytic oxidation. Paper presented at the IOP Conference Series: Materials Science and Engineering.

Fernández, J., Marín, P., Díez, F. V., & Ordóñez, S. (2015a). Coal mine ventilation air methane combustion in a catalytic reverse flow reactor: Influence of emission humidity. Fuel Processing Technology, 133, 202-209.

Fernández, J., Marín, P., Díez, F. V., & Ordóñez, S. (2015b). Experimental demonstration and modeling of an adsorption-enhanced reverse flow reactor for the catalytic combustion of coal mine ventilation air methane. Chemical Engineering Journal, 279, 198-206.

Fernández, J., Marín, P., Díez, F. V., & Ordóñez, S. (2016). Combustion of coal mine ventilation air methane in a regenerative combustor with integrated adsorption: Reactor design and optimization. Applied Thermal Engineering, 102, 167-175.

Houghton, J. (2009). Global warming: the complete briefing: Cambridge university press.

Karakurt, I., Aydin, G., & Aydiner, K. (2011). Mine ventilation air methane as a sustainable energy source. Renewable and Sustainable Energy Reviews, 15(2), 1042-1049.

Kurniawan, T., Budhi, Y. W., & Bindar, Y. (2018). Reverse Flow Reactor for Catalytic Oxidation of Lean Methane. World Chemical Engineering Journal, 2(1), 21-26.

Marín, P., Díez, F. V., & Ordóñez, S. (2019). Reverse flow reactors as sustainable devices for performing exothermic reactions: Applications and engineering aspects. Chemical Engineering and Processing-Process Intensification, 135, 175-189.

Marín, P., Ordóñez, S., & Díez, F. V. (2009). Procedures for heat recovery in the catalytic combustion of lean methane–air mixtures in a reverse flow reactor. Chemical Engineering Journal, 147(2-3), 356-365.

Matros, Y. S., & Bunimovich, G. A. (1996). Reverse-flow operation in fixed bed catalytic reactors. Catalysis Reviews, 38(1), 1-68.

Parentis, M. L., Bonini, N. A., & Gonzo, E. E. (2011). Effectiveness factor calculation and monolith reactor simulation with non-uniform washcoat and arbitrary catalytic activity distribution.

Setiawan, A., Kennedy, E. M., & Stockenhuber, M. (2017). Development of Combustion Technology for Methane Emitted from Coal‐Mine Ventilation Air Systems. Energy Technology, 5(4), 521-538.

Wang, S., Gao, D., & Wang, S. (2014). Steady and transient characteristics of catalytic flow reverse reactor integrated with central heat exchanger. Industrial & Engineering Chemistry Research, 53(32), 12644-12654.

Wang, Y., Man, C., & Che, D. (2010). Catalytic combustion of ventilation air methane in a reverse-flow reactor. Energy & fuels, 24(9), 4841-4848.




DOI: http://dx.doi.org/10.36055/jip.v10i1.10834

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                    

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.