Pyrolysis Carbonization of Sago Starch

Haryadi Wibowo


Battery requirements are increasing over time, the anode for sodium ion batteries (SIB) can use amorphous carbon. Carbon synthesis is carried out via pyrolysis. Research on the synthesis of carbon derived from sago starch is still rare. This study aims to determine the carbon characteristics of sago starch treated with nitrogen doping according to the SIB anode by taking into account the morphology, size distribution, material structure, material composition, and the distance between layers. The carbonization method used in this research is the pyrolysis process at 900 o C for 1 hour. Variations in the experiment were carried out through direct pyrolysis process with variations of urea against starch 3:1, 2:1, and pure starch. The experimental results were analysis using SEM (EDS) and XRD. The results showed that the pyrolysis process doped with nitrogen with a ratio of 3:1 urea had an interlayer distance of 0.353304 nm, 2:1 had an interlayer of 0.368059 nm, and 0.390178 nm of pure sago starch. This value indicates that carbon is a non-graphite material (> 0.3354 nm). The carbon produced from pyrolysis produces carbon that is amorphous and has a similar shape, which is like wood.

Full Text:



ARAVINDAN, V., KARTHIKEYAN, K., LEE, J., MADHAVI, S. & LEE, Y. J. J. O. P. D. A. P. 2011. Synthesis and improved electrochemical properties of Li2MnSiO4 cathodes. 44, 152001.

AZHAR, M. 2016. Biomolekul sel: karbohidrat, protein, dan enzim. UNP Press.

BERNIER, P., FISCHER, J. E., ROTH, S. & SOLIN, S. A. 2012. Chemical Physics of Intercalation II, Springer Science & Business Media.

BERTOFT, E. 2017. Understanding starch structure: Recent progress. Agronomy, 7, 56.

CHEN, X., ZHENG, Y., LIU, W., ZHANG, C., LI, S. & LI, J. 2019. High-performance sodium-ion batteries with a hard carbon anode: transition from the half-cell to full-cell perspective. Nanoscale, 11, 22196-22205.

CHOUDHARY, O. P. & CHOUDHARY, P. 2017. Scanning electron microscope: advantages and disadvantages in imaging components. Int. J. Curr. Microbiol. Appl. Sci, 6, 1877-1882.

DAHBI, M., YABUUCHI, N., KUBOTA, K., TOKIWA, K. & KOMABA, S. 2014. Negative electrodes for Na-ion batteries. Physical chemistry chemical physics, 16, 15007-15028.

DOU, X., HASA, I., SAUREL, D., VAALMA, C., WU, L., BUCHHOLZ, D., BRESSER, D., KOMABA, S. & PASSERINI, S. 2019. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 23, 87-104 %@ 1369-7021.


HERAWATI, H. 2016. Potensi pengembangan produk pati tahan cerna sebagai pangan fungsional. Jurnal Penelitian dan Pengembangan Pertanian, 30, 31-39 %@ 2541-0822.

HU, L., CHENG, G., REN, J., WANG, F. & REN, J. 2019. Conformal carbon coating on hard carbon anode derived from propionaldehyde for excellent performance of lithium-ion batteries. Int. J. Electrochem. Sci, 14, 2804.

IRISARRI, E., PONROUCH, A. & PALACIN, M. R. 2015. Hard carbon negative electrode materials for sodium-ion batteries. Journal of The Electrochemical Society, 162, A2476 %@ 1945-7111.

KHOSRAVI, M., BASHIRPOUR, N. & NEMATPOUR, F. Synthesis of hard carbon as anode material for lithium ion battery. 2014. Trans Tech Publ, 922-926 %@ 3037859075.

KOSWARA, S. 2009. Teknologi modifikasi pati. Teknol. Pangan, 1-32.

LIU, J., ZHANG, Y., ZHANG, L., XIE, F., VASILEFF, A. & QIAO, S. Z. J. A. M. 2019. Graphitic carbon nitride (g‐C3N4)‐derived N‐rich graphene with tuneable interlayer distance as a high‐rate anode for sodium‐ion batteries. 31, 1901261.

MISCHNICK, P. & MOMCILOVIC, D. 2010. Chemical structure analysis of starch and cellulose derivatives. Advances in carbohydrate chemistry and biochemistry. Elsevier.

NIZAMUDDIN, S., SIDDIQUI, M. T. H., MUBARAK, N. M., BALOCH, H. A., MAZARI, S. A., TUNIO, M. M., GRIFFIN, G. J., SRINIVASAN, M. P., TANKSALE, A. & RIAZ, S. 2018. Advanced nanomaterials synthesis from pyrolysis and hydrothermal carbonization: A review. Current Organic Chemistry, 22, 446-461 %@ 1385-2728.

PARIS, O., ZOLLFRANK, C. & ZICKLER, G. A. 2005. Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis. Carbon, 43, 53-66 %@ 0008-6223.

SANGSTER, J. 2007. C-Na (carbon-sodium) system. Journal of Phase Equilibria and Diffusion, 28, 571-579 %@ 1863-7345.

SUN, N., LIU, H. & XU, B. 2015. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. Journal of materials chemistry a, 3, 20560-20566.

TITIRICI, M.-M. 2013. Sustainable carbon materials from hydrothermal processes, John Wiley & Sons.

WINTER, M., BESENHARD, J. O., SPAHR, M. E. & NOVAK, P. 1998. Insertion electrode materials for rechargeable lithium batteries. Advanced materials, 10, 725-763 %@ 0935-9648.

XIA, X., OBROVAC, M., DAHN, J. J. E. & LETTERS, S. S. 2011. Comparison of the reactivity of NaxC6 and LixC6 with non-aqueous solvents and electrolytes. 14, A130.



Jurnal integrasi Proses (JIP) has been indexed by:




This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.