EKSTRAKSI KITIN DARI JAMUR TIRAM MENGGUNAKAN REAKTOR MICROWAVE

Nufus Kanani, Wardalia Wardalia, Widya Ernayati, Endarto Yudo Wardhono, Rahmayetty Rahmayetty, Muhammad Triyogo Adiwibowo, Tazkia Nuraviari Adeliana, Bimo Martino

Abstract


Kitin adalah homopolimer yang tersusun dari N-acetyl d-glucosamine dan glucosamine yang terikat dengan β 1–4 glycosidic. Kitin umumnya diperoleh dari ekstraksi kulit udang melalui proses deproteinasi dan demineralisasi dengan tahapan proses yang lama dan panjang. Pada penelitian ini dilakukan isolasi kitin dari jamur tiram sebagai alternatif sumber bahan baku dengan bantuan reaktor microwave. Proses ekstraksi dilakukan pada variasi waktu antara 5-60 menit untuk memperoleh kadar protein yang optimum. Selanjutnya dilakukan variasi temperatur antara 50-80°C untuk memperoleh kadar kitin. Hasil perolehan kadar protein tertinggi didapatkan pada waktu reaksi selama 60 menit yaitu 99,91% dan kadar kitin tertinggi diperoleh pada temperatur 80°C dengan kadar kitin yang didapatkan sebesar 7,10%.

Keywords


Kitin, Jamur Tiram, Ekstraksi, Reaktor Microwave

Full Text:

PDF

References


Arifin, Z., & Irawan, D. (2015). Comparison between Conventional and Ultrasonic Preparation of Chitosan from Shrimp Shells Waste. Advanced Materials Research, 1123, 205–208.

Azzouz, A., & Ballesteros, E. (2016). Determination of 13 endocrine disrupting chemicals in environmental solid samples using microwave-assisted solvent extraction and continuous solid-phase extraction followed by gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 408(1), 231–241.

Beil, S., Schamberger, A., Naumann, W., Machill, S., & van Pée, K.-H. (2012). Determination of the degree of N-acetylation (DA) of chitin and chitosan in the presence of water by first derivative ATR FTIR spectroscopy. Carbohydrate Polymers, 87(1), 117–122.

Dhillon, G. S., Kaur, S., Brar, S. K., & Verma, M. (2013). Green synthesis approach: Extraction of chitosan from fungus mycelia. Critical Reviews in Biotechnology, 33(4), 379–403.

Kalač, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218.

Parhi, R. (2020). Drug delivery applications of chitin and chitosan: A review. Environmental Chemistry Letters, 1–18.

Paulino, A. T., Simionato, J. I., Garcia, J. C., & Nozaki, J. (2006). Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers, 64(1), 98–103.

Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86(3), 1137–1144.

Syafruddin, S., Hasan, H., & Amin, F. (2016). Analisis Kadar Protein pada Ikan Lele (Clarias Batrachus) yang Beredar di Pasar Tradisional di Kabupaten Gowa dengan Menggunakan Metode Kjeldahl. Majalah Farmasi Nasional, 13(2), 77–87.

Synytsya, A., Míčková, K., Synytsya, A., Jablonskỳ, I., Spěváček, J., Erban, V., Kováříková, E., & Čopíková, J. (2009). Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers, 76(4), 548–556.

Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174.

Zivanovic, S., Buescher, R., & Kim, S. K. (2003). Mushroom texture, cell wall composition, color, and ultrastructure as affected by pH and temperature. Journal of Food Science, 68(5), 1860–1865.




DOI: http://dx.doi.org/10.36055/jip.v11i2.15687

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.