LITERATURE STUDY ON THE SCREENING OF Al-MOFs POROUS MATERIAL FOR DIMETHYL ETHER (DME) GAS PURIFICATION

Ahmad Syarwani, Yuniar Ponco Prananto

Abstract


Renewable dimethyl ether (DME) gas is expected to replace LPG due to the high demand for domestic fuel gas and the shortage of LPG supply. DME properties are closely identical to that of LPG. DME gas can be produced directly and indirectly from various sources, including coal, natural gas, and other readily available biomass. The synthetic DME gas produces by-product gases, mainly CO2. Thus, purification of DME is needed. Al-MOF is proposed to be one of many candidates for CO2 gas absorption. A literature review was conducted in this study to screen some potential Al-MOF based on scientific peer-reviewed articles published in the last decade. The data were gathered by developing research questions using PICO(S) analysis. Particularly, this study highlights the effect of ligands on pore sizes, the effect of the amine group on absorption capacity, and the thermal stability of Al-MOF. This preliminary study finds several potential Al-MOFs suitable for the task. Based on this study, the NH2-MIL-53(Al) and NH2-MIL-101(Al) are highlighted as having the potency to be used in the DME purification process. However, further studies, including evidence-based gas separation experiments, are compulsory and need to be performed before this Al-MOF is applied to the DME purification process on a bigger scale.


Keywords


Aluminum; CO2; Separation; DME; MOF

Full Text:

PDF

References


Abedini, R., Omidkhah, M., & Dorosti, F. (2014). Highly permeable poly (4-methyl-1-pentyne)/NH2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation. RSC Advances, 4(69), 36522–36537.

Abid, H. R., Rada, Z. H., Liu, L., Wang, S., & Liu, S. (2021). Striking CO2 capture and CO2/N2 separation by Mn/Al bimetallic MIL-53. Polyhedron, 193, 114898.

Adegoke, K. A., & Maxakato, N. W. (2021). Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Materials Today Energy, 21, 100816.

Ahmadi Feijani, E., Tavasoli, A., & Mahdavi, H. (2015). Improving gas separation performance of poly (vinylidene fluoride) based mixed matrix membranes containing metal–organic frameworks by chemical modification. Industrial & Engineering Chemistry Research, 54(48), 12124–12134.

Alezi, D., Belmabkhout, Y., Suyetin, M., Bhatt, P. M., Weseliński, Ł. J., Solovyeva, V., Adil, K., Spanopoulos, I., Trikalitis, P. N., Emwas, A.-H., & Eddaoudi, M. (2015). MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH4, O2, and CO2 Storage. Journal of the American Chemical Society, 137(41), 13308–13318.

Anggarani, R., Wibowo, C. S., & Rulianto, D. (2014). Application of Dimethyl Ether as LPG Substitution for Household Stove. Conference and Exhibition Indonesia Renewable Energy & Energy Conservation, Jakarta - Indonesia, 47, 227–234.

Babar, M., Mubashir, M., Mukhtar, A., Saqib, S., Ullah, S., Bustam, M. A., & Show, P. L. (2021). Sustainable functionalized metal-organic framework NH2-MIL-101(Al) for CO2 separation under cryogenic conditions. Environmental Pollution, 279, 116924.

Benoit, V., Chanut, N., Pillai, R. S., Benzaqui, M., Beurroies, I., Serre, C., Steunou, N., Maurin, G., & Llewellyn, P. L. (2013). A promising metal-organic framework (MOF), MIL-96(Al) for CO2 separation under humid conditions. Journal of Material Chemistry A, 12.

Brandt, P., Xing, S.-H., Liang, J., Kurt, G., Nuhnen, A., Weingart, O., & Janiak, C. (2021). Zirconium and Aluminum MOFs for Low-Pressure SO2 Adsorption and Potential Separation: Elucidating the Effect of Small Pores and NH 2 Groups. ACS Applied Materials & Interfaces, 13(24), 29137–29149.

Chen, X., Hoang, V.-T., Rodrigue, D., & Kaliaguine, S. (2013). Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation. RSC Advances, 3, 24266.

Chen, X. Y., Vinh-Thang, H., Rodrigue, D., & Kaliaguine, S. (2012). Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation. Industrial & Engineering Chemistry Research, 51(19), 6895–6906.

Coelho, J. A., Ribeiro, A. M., Ferreira, A. F. P., Lucena, S. M. P., Rodrigues, A. E., & Azevedo, D. C. S. de. (2016). Stability of an Al-Fumarate MOF and Its Potential for CO2 Capture from Wet Stream. Industrial & Engineering Chemistry Research, 55(7), 2134–2143.

Colorado-Peralta, R., María Rivera-Villanueva, J., Manuel Mora-Hernández, J., Morales-Morales, D., & Ángel Alfonso-Herrera, L. (2022). An overview of the role of supramolecular interactions in gas storage using MOFs. Polyhedron, 224, 115995.

Dong, X., Liu, Q., & Huang, A. (2016). Highly permselective MIL‐68 (Al)/matrimid mixed matrix membranes for CO2/CH4 separation. Journal of Applied Polymer Science, 133(22).

Elsayed, E., Saleh, M. M., AL-Dadah, R., Mahmoud, S., & Elsayed, A. (2021). Aluminium fumarate metal-organic framework coating for adsorption cooling application: Experimental study. International Journal of Refrigeration, 130, 288–304.

Fan, W., Zhang, X., Kang, Z., Liu, X., & Sun, D. (2021). Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coordination Chemistry Reviews, 443, 213968.

Fasya, F., & Iskandar, N. (2015). Melt Loss Dan Porositas Pada Aluminium Hasil Daur Ulang. Jurnal Teknik Mesin, 3(1), 44–50.

Feijani, E. A., Mahdavi, H., & Tavasoli, A. (2015). Poly (vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications. Chemical Engineering Research and Design, 96, 87–102.

Ferreira, A. F. P., Ribeiro, A. M., Kulaç, S., & Rodrigues, A. E. (2015). Methane purification by adsorptive processes on MIL-53(Al). Metal-Organic Frameworks for Emerging Chemical Technologies, 124, 79–95.

Gulati, A., & Kakkar, R. (2018). DFT studies on storage and adsorption capacities of gases on MOFs. Physical Sciences Reviews, 3(8). 20170196.

Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.

Joshi, J. N., Moran, C. M., Feininger, H. P., Dow, J. M., & Walton, K. S. (2019). Household Aluminum Products as Insoluble Precursors for Directed Growth of Metal–Organic Frameworks. Crystal Growth & Design, 19(9), 5097–5104.

Kementerian ESDM Indonesia. (2020). Booklet Tambang Bauksit 2020. https://www.esdm.go.id/id/booklet/booklet-tambang-bauksit-2020. Retrieved June 21, 2022.

Kementerian ESDM Indonesia, (2020). DME, Alternatif Pengganti LPG [www.esdmmigas.go.id]. Migas.esdm.go.id. https://migas.esdm.go.id/post/read/dme-alternatif-pengganti-lpg, (accessed on 19 June 2022).

Kumari, A., Kaushal, S., & Singh, P. P. (2021). Bimetallic metal organic frameworks heterogeneous catalysts: Design, construction, and applications. Materials Today Energy, 20, 100667.

Kurnia’Arifushidqi, L., Muhammad, I., Rahmawati, Y., & Nurkhamidah, S. (2021). Pra Desain Pabrik Dimetil Eter (DME) dari Gas Alam Menggunakan Metode Indirect Process. Jurnal Teknik ITS, 10(1), F19–F24.

Li, D., Chen, L., Liu, G., Yuan, Z., Li, B., Zhang, X., & Wei, J. (2021). Porous metal–organic frameworks for methane storage and capture: Status and challenges. New Carbon Materials, 36(3), 468–496.

Li, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S., & Chen, B. (2019). Porous metal-organic frameworks for gas storage and separation: Status and challenges. Energy Chem, 1(1), 100006.

Li, J., Hurlock, M. J., Goncharov, V. G., Li, X., Guo, X., & Zhang, Q. (2021). Solvent-Free and Phase-Selective Synthesis of Aluminum Trimesate Metal–Organic Frameworks. Inorganic Chemistry, 60(7), 4623–4632.

Li, J., Ye, W., & Chen, C. (2019). Chapter 5—Removal of toxic/radioactive metal ions by metal-organic framework-based materials. In C. Chen (Ed.), Interface Science and Technology, Vol. 29, 217–279. Elsevier.

Lin, R.-B., Xiang, S., Zhou, W., & Chen, B. (2020). Microporous Metal-Organic Framework Materials for Gas Separation. Chemistry, 6(2), 337–363.

Liu, Z., Cheng, C., Han, J., Qi, X., Zhao, Z., & Teng, R. (2021). Dehumidification performance of aluminum fumarate metal organic framework and its composite. Applied Thermal Engineering, 199, 117570.

Merkouri, L.-P., Ahmet, H., Ramirez Reina, T., & Duyar, M. S. (2022). The direct synthesis of dimethyl ether (DME) from landfill gas: A techno-economic investigation. Fuel, 319, 123741.

Mevawala, C., Jiang, Y., & Bhattacharyya, D. (2017). Plant-wide modeling and analysis of the shale gas to dimethyl ether (DME) process via direct and indirect synthesis routes. Applied Energy, 204, 163–180.

Mohan, B., Yang, W., Yu, W., & Tay, K. L. (2017). Numerical analysis of spray characteristics of dimethyl ether and diethyl ether fuel. Clean, Efficient and Affordable Energy for a Sustainable Future, 185, 1403–1410.

Mota, N.-M. O., ElenaAU-Pawelec, BárbaraAU-Fierro, José Luis G. AU-Navarro, Rufino M. TI-Direct Synthesis of Dimethyl Ether from CO2: Recent Advances in Bifunctional/Hybrid Catalytic Systems. (2021). Catalysts, 11(4), 411.

Murti, G. W., Priyanto, U., Masfuri, I., & Adelia, N. (2021). The Effect of Dimethyl Ether (DME) as LPG Subtitution on Household Stove: Mixture Stability, Stove Efficiency, Fuel Consumption, and Materials Testing. Majalah Ilmiah Pengkajian Industri, 15(2). 77-86.

Omojola, T., Silverwood, I. P., & O’Malley, A. J. (2020). Molecular behaviour of methanol and dimethyl ether in H-ZSM-5 catalysts as a function of Si/Al ratio: A quasielastic neutron scattering study. Catalysis Science & Technology, 10(13), 4305–4320.

Panda, D., Patra, S., Awasthi, M. K., & Singh, S. K. (2020). Lab Cooked MOF for CO2 Capture: A Sustainable Solution to Waste Management. Journal of Chemical Education, 97(4), 1101–1108.

Panigrahy, S., & Mishra, S. C. (2018). The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application. Energy, 150, 176–189.

Ramadhani, W. S., Paramudita, I., Lailiyah, Q., & Bakti, P. (2020). Karakteristik Kinerja Kompor Gas LPG Menggunakan Bahan Bakar DME Dengan Variasi Diameter Nozzle dan Tekanan Kerja Kompor. Jurnal Standardisasi, 22(3), 199–210.

Rodenas, T., van Dalen, M., García‐Pérez, E., Serra‐Crespo, P., Zornoza, B., Kapteijn, F., & Gascon, J. (2014a). Visualizing MOF mixed matrix membranes at the nanoscale: Towards structure‐performance relationships in CO2/CH4 separation over NH2‐MIL‐53 (Al)@ PI. Advanced Functional Materials, 24(2), 249–256.

Rodenas, T., van Dalen, M., Serra-Crespo, P., Kapteijn, F., & Gascon, J. (2014b). Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 192, 35–42.

Sabetghadam, A., Seoane, B., Keskin, D., Duim, N., Rodenas, T., Shahid, S., Sorribas, S., Guillouzer, C. L., Clet, G., & Tellez, C. (2016). Metal organic framework crystals in mixed‐matrix membranes: Impact of the filler morphology on the gas separation performance. Advanced Functional Materials, 26(18), 3154–3163.

Saravanan, K., Ham, H., Tsubaki, N., & Bae, J. W. (2017). Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis B: Environmental, 217, 494–522.

Seddon, D. (2011). 12—Methanol and dimethyl ether (DME) production from synthesis gas. In M. R. Khan (Ed.), Advances in Clean Hydrocarbon Fuel Processing (pp. 363–386). Woodhead Publishing.

Seoane, B., Sebastián, V., Téllez, C., & Coronas, J. (2013). Crystallization in THF: the possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68 (Al). Crystal Engineering & Communication, 15(45), 9483–9490.

Serra-Crespo, P., Gobechiya, E., Ramos-Fernandez, E. V., Juan-Alcañiz, J., Martinez-Joaristi, A., Stavitski, E., Kirschhock, C. E. A., Martens, J. A., Kapteijn, F., & Gascon, J. (2012). Interplay of Metal Node and Amine Functionality in NH2-MIL-53: Modulating Breathing Behavior through Intra-framework Interactions. Langmuir, 28(35), 12916–12922.

Shang, S., Yang, C., Sun, M., Tao, Z., Hanif, A., Gu, Q., & Shang, J. (2022). CO2 capture from wet flue gas using transition metal inserted porphyrin-based metal-organic frameworks as efficient adsorbents. Separation and Purification Technology, 301, 122058.

Sun, L., Yin, M., Li, Z., & Tang, S. (2022). Facile microwave-assisted solvothermal synthesis of rod-like aluminum terephthalate [MIL-53(Al)] for CO2 adsorption. Journal of Industrial and Engineering Chemistry, 112, 279–286.

Tian, J., Xu, Z.-Y., Zhang, D.-W., Wang, H., Xie, S.-H., Xu, D.-W., Ren, Y.-H., Wang, H., Liu, Y., & Li, Z.-T. (2016). Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nature Communications, 7(1), 11580.

Tien-Binh, N., Vinh-Thang, H., Chen, X. Y., Rodrigue, D., & Kaliaguine, S. (2015). Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation. Journal of Materials Chemistry A, 3(29), 15202–15213.

Towsif Abtab, S. M., Alezi, D., Bhatt, P. M., Shkurenko, A., Belmabkhout, Y., Aggarwal, H., Weseliński, Ł. J., Alsadun, N., Samin, U., Hedhili, M. N., & Eddaoudi, M. (2018). Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water. Chemistry, 4(1), 94–105.

Wang, H., Zhu, Q.-L., Zou, R., & Xu, Q. (2017). Metal-Organic Frameworks for Energy Applications. Chem, 2(1), 52–80.

Wu, T., Prasetya, N., & Li, K. (2020). Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. Journal of Membrane Science, 615, 118493.

Yin, J., Zhang, J., Fu, W., Ran, H., Zhang, Y., Zhang, M., Jiang, W., Li, H., Zhu, W., & Li, H. (2022). Porous liquids for gas capture, separation, and conversion: Narrowing the knowing-doing gap. Separation and Purification Technology, 121456.

Yuliarita, E., Zulkifliani, Z., Atmanto, M. D., Sunarjanto, D., & Lubad, A. M. (2020). Kajian Pemanfaatan Gas DME (Dimethyl Ether) atau Uji Terap Pada Sektor Rumah Tangga Di Wilayah Sumatera Selatan. Lembaran Publikasi Minyak dan Gas Bumi, 54(2), 61–67.

Zhang, X., Lin, R.-B., Wu, H., Huang, Y., Ye, Y., Duan, J., Zhou, W., Li, J.-R., & Chen, B. (2022). Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. Chemical Engineering Journal, 431, 134184.

Zhu, H., Wang, L., Jie, X., Liu, D., & Cao, Y. (2016). Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al). ACS Applied Materials & Interfaces, 8(34), 22696–22704.




DOI: http://dx.doi.org/10.36055/jip.v12i2.17485

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.