EFFECT OF CONCENTRATION ON KINETICS AND THERMODYNAMICS PARAMETER IN THE Cu (II) REMOVAL BY ACTIVATED ZEOLITE

Moh. Azhar Afandy, Fikrah Dian Indrawati Sawali

Abstract


Adsorption is a commonly used technique for removing heavy metals, particularly Cu (II), due to its efficiency, cost-effectiveness, simple operation, high stability, and excellent selectivity. This study aims to investigate the impact of varying Cu (II) concentrations on the kinetic and thermodynamic parameters during the adsorption process. The adsorption of Cu (II) by activated zeolite was conducted in several batches, using various initial concentrations (20-120 mg/L) and for varied operating time (30-180 minutes). Various kinetic models have been used to evaluate kinetic rate parameters and maximum adsorption capacity, calculated using linear regression equations. Thermodynamic studies were conducted at different temperatures (303-318 K). The study's results indicate that the concentration has a comparable impact on Cu (II) adsorption by activated zeolite, suggesting a pseudo-second-order equation. As the concentration of Cu (II) increases, so do the adsorption capacity (qe) and adsorption rate. At a Cu (II) concentration of 120 mg/L, the adsorption capacity and rate were the maximum, with qe= 5.6054 mg/g, k2 = 64.2279 g.mg-1.min-1, and Coefficient Correlation value (R2) = 0.9998. The ΔG° value suggests that the adsorption process happens spontaneously and through physical adsorption. On the other hand, the ΔH° value reveals that it happens endothermic.

Keywords


Adsorption; Cu (II); Kinetics; Thermodynamics; Zeolite

Full Text:

PDF

References


Afandy, Moh. A., & Sawali, F. D. I. (2024). Adsorption of chromium hexavalent in aqueous solutions using acid-activated wood charcoal: Isotherm and kinetics study. Jurnal Ilmiah Teknik Kimia, 8(1), 1–14.

Ali Babeker, T. M., Lv, S., Wu, J., Zhou, J., & Chen, Q. (2024). Insight into Cu (II) adsorption on pyrochar and hydrochar resultant from Acacia Senegal waste for wastewater decontamination. Chemosphere, 356. https://doi.org/10.1016/j.chemosphere.2024.141881

Avelino Abin-Bazaine, A., Sandino Aquino-De Los Ríos, G., Miguel Rodríguez-Vázquez, L., Santellano-Estrada, E., Rodríguez-Piñeros, S., & Cortés-Palacios, L. (2019). Copper removal by acid-conditioned zeolite, part II: Kinetics, and thermodynamic studies. Journal of Environment and Earth Science, 9(3), 39–50.

Benjelloun, M., Miyah, Y., Akdemir Evrendilek, G., Zerrouq, F., & Lairini, S. (2021). recent advances in adsorption kinetic models: Their application to dye types. Arabian Journal of Chemistry, 14(4), 103031. https://doi.org/10.1016/j.arabjc.2021.103031

Cazetta, A. L., Vargas, A. M. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., Silva, T. L., Moraes, J. C. G., & Almeida, V. C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174(1), 117–125. https://doi.org/10.1016/j.cej.2011.08.058

Delly, J., Mizuno, K., Soesilo, T. E. B., & Gozan, M. (2021). The seawater heavy metal content of the mining port close to the residential area in the Morowali district. IOP Conference Series: Earth and Environmental Science, 940(1). https://doi.org/10.1088/1755-1315/940/1/012019

Edet, U. A., & Ifelebuegu, A. O. (2020). Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6). https://doi.org/10.3390/PR8060665

El-Kammah, M., Elkhatib, E., & Aboukila, E. (2022). Ecofriendly nanoparticles derived from water industry byproducts for effective removal of Cu (II) from wastewater: Adsorption isotherms and kinetics. Inorganic Chemistry Communications, 146. https://doi.org/10.1016/j.inoche.2022.110062

Elver, O., Aydın Temel, F., Cagcag Yolcu, O., Akbal, F., & Kuleyin, A. (2024). Modeling of Cu(II) adsorption on the activated Phragmites australis waste by fuzzy-based and neural network-based inference systems. Journal of Industrial and Engineering Chemistry, 129, 180–192. https://doi.org/10.1016/j.jiec.2023.08.031

Ersali, S., Hadadi, V., Moradi, O., & Fakhri, A. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of ammonium ions using multi-walled carbon nanotube. Fullerenes, Nanotubes and Carbon Nanostructures, 150527104639002. https://doi.org/10.1080/1536383x.2013.787610

Finish, N., Ramos, P., Borojovich, E. J. C., Zeiri, O., Amar, Y., & Gottlieb, M. (2023). Zeolite performance in removal of multicomponent heavy metal contamination from wastewater. Journal of Hazardous Materials, 457.

Galamini, G., Ferretti, G., Medoro, V., Tescaro, N., Faccini, B., & Coltorti, M. (2020). Isotherms, kinetics, and thermodynamics of nh4 + adsorption in raw liquid manure by using natural chabazite zeolite-rich tuff. Water (Switzerland), 12(10), 1–16. https://doi.org/10.3390/w12102944

George, R., & Sugunan, S. (2014). Kinetics of adsorption of lipase onto different mesoporous materials: Evaluation of Avrami model and leaching studies. Journal of Molecular Catalysis B: Enzymatic, 105, 26–32. https://doi.org/10.1016/j.molcatb.2014.03.008

Georgiev, D., Bogdanov, B., Hristov, Y., & Markovska, I. (2012). The removal of Cu (II) ions from aqueous solutions on synthetic zeolite NaA. World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering, 6(4), 214–218.

Gupta, V. K., Agarwal, S., Bharti, A. K., & Sadegh, H. (2017). Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal. Journal of Molecular Liquids, 230, 667–673. https://doi.org/10.1016/j.molliq.2017.01.083

Haeril, H., Sawali, F. D. I., & Afandy, M. A. (2024). Phytoremediation of Cr(VI) from aqueos solution by Pistia stratiotes L.: Efficiency and kinetic models. Jurnal Teknik Kimia Dan Lingkungan, 8(1), 25–35. https://doi.org/10.33795/jtkl.v8i1.3803

Hokkanen, S., Bhatnagar, A., & Sillanpää, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. In Water Research (Vol. 91, pp. 156–173). Elsevier Ltd. https://doi.org/10.1016/j.watres.2016.01.008

Hong, S. W., Ahn, S. H., Kwon, O. K., & Chung, J. D. (2014). Validity of intra-particle models of mass transfer kinetics in the analysis of a fin-tube type adsorption bed. Journal of Mechanical Science and Technology, 28(5), 1985–1993. https://doi.org/10.1007/s12206-014-0347-4

Hubbe, Martin. A., Azizian, S., & Douven, S. (2019). Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A Review. BioResources, 14(3), 7582–7626.

Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry, 15, 14–27. https://doi.org/10.1016/j.wri.2016.06.001

Kristianto, H., Manurung, N., Wardhani, I. K., Prasetyo, S., Sugih, A. K., & Arbita, A. A. (2022). A kinetic, isotherm adsorption, and thermodynamic study of Congo red coagulation using Leucaena crude extract as natural coagulant. Water Practice and Technology, 17(6), 1332–1346. https://doi.org/10.2166/wpt.2022.058

López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. del C. A., Carrillo-González, R., Solís-Domínguez, F. A., Cuevas-Díaz, M. del C., & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1(8), 1–19. https://doi.org/10.1007/s42452-019-0977-3

Melliti, A., Yılmaz, M., Sillanpää, M., Hamrouni, B., & Vurm, R. (2023). Low-cost date palm fiber activated carbon for effective and fast heavy metal adsorption from water: Characterization, equilibrium, and kinetics studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 672. https://doi.org/10.1016/j.colsurfa.2023.131775

Mohamad Yusop, M. F., Abdullah, A. Z., & Ahmad, M. A. (2024). Amoxicillin adsorption from aqueous solution by Cu(II) modified lemon peel based activated carbon: Mass transfer simulation, surface area prediction and F-test on isotherm and kinetic models. Powder Technology, 438. https://doi.org/10.1016/j.powtec.2024.119589

Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. (2022). Adsorption kinetics and isotherm models: A review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/cajost.v4i1.3

Oladoja, N. A. (2016). A critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies. Desalination and Water Treatment, 57(34), 15813–15825. https://doi.org/10.1080/19443994.2015.1076355

Panayotova, M. I. (2001). Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. www.elsevier.nl/locate/wasman

Pangeran, A. B., Afandy, Moh. A., & Sawali, F. D. I. (2023). Efficiency of FeSO4.7H2O as a coagulant on chromium hexavalent removal using coagulation-flocculation process: Optimization using response surface methodology. Jurnal Teknik Kimia Dan Lingkungan, 7(2), 123–133. https://doi.org/10.33795/jtkl.v7i2.3560

Qiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., & Zhang, Q. X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University: Science A, 10(5), 716–724. https://doi.org/10.1631/jzus.A0820524

Sakin Omer, O., Hussein, M. A., Hussein, B. H. M., & Mgaidi, A. (2018). Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arabian Journal of Chemistry, 11(5), 615–623. https://doi.org/10.1016/j.arabjc.2017.10.007

Simonin, J. P., & Bouté, J. (2016). Intraparticle diffusion-adsorption model to describe liquid/solid adsorption kinetics. Revista mexicana de ingeniería química, 15(1), 161-173.

Sirotiak, M., Alica, B., & Blinová, L. (2014). Uv-Vis spectrophotometric determinations of selected elements in modelled aqueous solutions. Journal of Environmental Protection, Safety, Education and Management, 2(3), 75–87.

Turan, N. G., & Ergun, O. N. (2009). Removal of Cu(II) from leachate using natural zeolite as a landfill liner material. Journal of Hazardous Materials, 167(1–3), 696–700. https://doi.org/10.1016/j.jhazmat.2009.01.047

Varank, G., Demir, A., Yetilmezsoy, K., Top, S., Sekman, E., & Bilgili, M. S. (2012). Removal of 4-nitrophenol from aqueous solution by natural low-cost adsorbents. Indian Journal of Chemical Technology, 19(1), 7–25.

Velarde, L., Nabavi, M. S., Escalera, E., Antti, M. L., & Akhtar, F. (2023). Adsorption of heavy metals on natural zeolites: A review. In Chemosphere (Vol. 328). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2023.138508

Wang, C., Chen, L., & Liu, S. (2019). Activated carbon fiber for adsorption/electrodeposition of Cu (II) and the recovery of Cu (0) by controlling the applied voltage during membrane capacitive deionization. Journal of Colloid and Interface Science, 548, 160–169. https://doi.org/10.1016/j.jcis.2019.04.030

Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2–3), 366–373. https://doi.org/10.1016/j.cej.2009.01.014

Xiyili, H., Çetintaş, S., & Bingöl, D. (2017). removal of some heavy metals onto mechanically activated fly ash: Modeling approach for optimization, isotherms, kinetics and thermodynamics. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2017.04.012

Yang, J., Huang, B., & Lin, M. (2020). adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: Isotherm, kinetics, and thermodynamics studies. Journal of Chemical and Engineering Data, 65(5), 2751–2763. https://doi.org/10.1021/acs.jced.0c00085

Yazdani, M., Bahrami, H., & Arami, M. (2014). Preparation and characterization of chitosan/feldspar biohybrid as an adsorbent: Optimization of adsorption process via response surface modeling. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/370260

Ying, W. (2019). Pseudo-first and second-order models for p adsorption onto termite mound soil. IOSR Journal of Applied Chemistry (IOSR-JAC, 12(2), 11–16. https://doi.org/10.9790/5736-1202011116




DOI: http://dx.doi.org/10.62870/jip.v13i2.25316

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.