THE EFFECT OF OIL PALM EMPTY FRUIT BUNCH (OPEFB) FILLER ON THE IMPACT STRENGTH, SURFACE MORPHOLOGY, AND THERMAL PROPERTIES OF HIGH IMPACT POLYSTYRENE (HIPS)/OPEFB COMPOSITES
Abstract
Penelitian ini mengkaji pengaruh filler Tandan Kosong Kelapa Sawit (TKKS) terhadap sifat mekanik dan termal komposit High-Impact Polystyrene (HIPS). Polimer HIPS, yang dikenal karena ketahanan impaknya, dikombinasikan dengan filler TKKS untuk dikaji perubahan yang terjadi terhadap kekuatan impak, suhu transisi kaca (Tg), suhu leleh (Tm), entalpi pelelehan (ΔHm), dan morfologi permukaan. Komposit HIPS/TKKS, dengan variasi persentase TKKS 0%b, 10%b, 15%b, dan 20%b, disiapkan menggunakan Compounder dan Manual Forming Machine. Pengujian kekuatan impak dilakukan dengan metode Charpy unnotched, sementara pengujian morfologi serta sifat termal dilakukan menggunakan Scanning Electron Microscope (SEM) dan Differential Scanning Calorimetry. Hasil pengujian menunjukkan penurunan kekuatan impak seiring dengan meningkatnya kandungan TKKS yang disebabkan oleh lemahnya ikatan antarmuka antara matriks HIPS yang bersifat hidrofobik dan filler TKKS yang bersifat hidrofilik. Analisis termal menunjukkan penurunan Tg, Tm, dan ΔHm yang mengindikasikan perubahan pada kristalinitas dan mobilitas rantai polimer akibat penambahan filler TKKS pada matriks HIPS. Observasi morfologi permukaan menunjukkan adanya pori-pori ukuran besar dan tidak merata, terutama pada pengisian TKKS yang lebih besar, yang berkontribusi pada penurunan performa kuat impak komposit. Penelitian ini memberikan wawasan signifikan mengenai penggunaan TKKS tanpa modifikasi sebagai filler dalam komposit HIPS. Penelitian ini mengungkap tantangan yang timbul akibat sifat hidrofilik filler TKKS dan dampaknya terhadap sifat termal dan mekanik komposit HIPS/TKKS. Temuan ini menekankan pentingnya peningkatan kompatibilitas antarmuka untuk mendukung pengembangan material komposit HIPS/TKKS yang berkelanjutan dan ekonomis.
Keywords
Full Text:
PDFReferences
Aguilar, A. D., Valle, V., Almeida-Naranjo, C. E., Naranjo, Á., Cadena, F., Kreiker, J., & Raggiotti, B. (2022). Characterization dataset of oil palm empty fruit bunch (OPEFB) fibers – Natural reinforcement/filler for materials development. Data in Brief, 45, 108618.
Ahmad, F. B., Zhang, Z., Doherty, W. O. S., & O’Hara, I. M. (2019). The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renewable and Sustainable Energy Reviews, 109, 386–411.
Akhlisah, Z. N., Yunus, R., Abidin, Z. Z., Lim, B. Y., & Kania, D. (2021). Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals. Biomass and Bioenergy, 144, 105901.
Alfatah, T., Mistar, E. M., Syabriyana, M., & Supardan, M. D. (2022). Advances in oil palm shell fibre reinforced thermoplastic and thermoset polymer composites. Alexandria Engineering Journal, 61(6), 4945–4962.
Anita, S. H., Fitria, Solihat, N. N., Sari, F. P., Risanto, L., Fatriasari, W., & Hermiati, E. (2020). Optimization of microwave-assisted oxalic acid pretreatment of oil palm empty fruit bunch for production of fermentable sugars. Waste and Biomass Valorization, 11(6), 2673–2687.
Arakawa, C. K., & DeForest, C. A. (2017). Chapter 19 - Polymer design and development. In A. Vishwakarma & J. M. Karp (Eds.), Biology and Engineering of Stem Cell Niches (pp. 295–314). Academic Press.
Bachtiar, D., Sapuan, S., Abdan, K., Zainudin, E. S., & Zaman, K. (2012). The flexural, impact and thermal properties of untreated short sugar palm fihre reinforced high impact polystyrene (HIPS) composites. Polymers and Polymer Composites, 20.
Bakri, M. K., Jayamani, E., Soon, K., & Hamdan, S. (2015). Reinforced oil palm fiber epoxy composites: an investigation on chemical treatment of fibers on acoustical, morphological, mechanical and spectral properties. Materials Today: Proceedings, 2, 2747–2756.
Balogun, O. P., Adediran, A. A., Omotoyinbo, J. A., Alaneme, K. K., & Oladele, I. O. (2020). Evaluation of water diffusion mechanism on mechanical properties of polypropylene composites. International Journal of Polymer Science, 2020(1), 8865748.
Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221–274.
Brunner, G. (2014). Chapter 8 - Processing of biomass with hydrothermal and supercritical water. In G. Brunner (Ed.), Supercritical Fluid Science and Technology (Vol. 5, pp. 395–509). Elsevier.
Chen, H., & Chen, H. (2014). Chemical composition and structure of natural lignocellulose. Biotechnology of Lignocellulose: Theory and Practice, 25–71.
Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 1–64.
Giakoumakis, N. S., Vos, C., Janssens, K., Vekeman, J., Denayer, M., De Proft, F., Marquez, C., & De Vos, D. (2024). Total revalorization of high impact polystyrene (HIPS): enhancing styrene recovery and upcycling of the rubber phase. Green Chemistry, 26(1), 340–352.
Gurmu, D. N., Gebrelibanos, H. M., Tefera, C. A., & Sirahbizu, B. (2024). experimental investigation the effect of bamboo micro filler on performance of bamboo-sisal-E-glass fiber-reinforced epoxy matrix hybrid composites. Heliyon, e40176.
Jamaluddin, J. (2005). Preparation of poly(styrene) grafted oil palm empty fruit bunch fiber and its application as a filler for high impact poly(styrene) composites. Universiti Putra Malaysia.
Juliana, A. H., Lee, S. H., Ashaari, Z., M. Tahir, P., Lum, W. C., & Uyup, M. K. A. (2019). Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites (pp. 141–156).
Khan, F., Hossain, N., Mim, J. J., Rahman, S. M. M., Iqbal, Md. J., Billah, M., & Chowdhury, M. A. (2024). Advances of composite materials in automobile applications – A review. Journal of Engineering Research.
Liu, J., Yu, Z., Shi, Y., Chang, H., Zhang, Y., Luo, J., & Lu, C. (2014). A preliminary study on the thermal degradation behavior and flame retardancy of high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite with a gradient structure. Polymer Degradation and Stability, 105, 21–30.
Liu, J., Zhang, Y., Peng, S., Pan, B., Lu, C., Liu, H., Ma, J., & Niu, Q. (2015). Fire property and charring behavior of high impact polystyrene containing expandable graphite and microencapsulated red phosphorus. Polymer Degradation and Stability, 121, 261–270.
Md Noh, N. H., & Wusko, I. (2020). Characterization and analysis of oil palm empty fruit bunch (OPEFB) waste of PT Kharisma Alam Persada South Borneo. Majalah Obat Tradisional, 25.
Montoro, S., Pereira, G., Pereira, G., Lima, M., Jesus, B., Silva, E., Benini, K. C., & Bandeira, C. (2017). Featuring high impact polystyrene composites strengthened with green coconut fiber developed for automotive industry application. Journal of Research Updates in Polymer Science, 6, 17–20.
Mrad, H., Alix, S., Migneault, S., Koubaa, A., & Perré, P. (2018). Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement, 115, 197–203.
Nikmatin, S., Syafiuddin, A., & Irwanto, D. (2017). Properties of oil palm empty fruit bunch-filled recycled acrylonitrile butadiene styrene composites: effect of shapes and filler loadings with random orientation. BioResources, 12, 1090–1101.
Pramono, E., Zakaria, M. A., Fridiasari, K. F., Ndruru, S. T. C. L., Bagaskara, M., Mustofa, R. E., Sejati, G. P. W., Purnawan, C., & Saputra, O. A. (2022). Cellulose derived from oil palm empty fruit bunches as filler on polyvinylidene fluoride based membrane for water containing humic acid treatment. Groundwater for Sustainable Development, 17, 100744.
Rama Rao, P., & Ramakrishna, G. (2022). Oil palm empty fruit bunch fiber: surface morphology, treatment, and suitability as reinforcement in cement composites- A state of the art review. Cleaner Materials, 6, 100144.
Ramlee, N. A., Jawaid, M., Zainudin, E. S., & Yamani, S. A. K. (2019). Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8(4), 3466–3474.
Saba, N., Jawaid, M., & Sultan, M. T. H. (2017). 6 - Thermal properties of oil palm biomass based composites. In M. Jawaid, P. Md Tahir, & N. Saba (Eds.), Lignocellulosic Fibre and Biomass-Based Composite Materials (pp. 95–122). Woodhead Publishing.
Serra-Parareda, F., Tarrés, Q., Espinach, F. X., Vilaseca, F., Mutjé, P., & Delgado-Aguilar, M. (2020). Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials. International Journal of Biological Macromolecules, 155, 81–90.
Shinoj, S., & Visvanathan, R. (2014). Oil palm fiber polymer composites: processing, characterization and properties. Lignocellulosic Polymer Composites: Processing, Characterization, and Properties, 175–212.
Suhartini, S., Rohma, N. A., Mardawati, E., Kasbawati, Hidayat, N., & Melville, L. (2022). Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review. Renewable and Sustainable Energy Reviews, 154, 111817.
Sun, X., Huang, C., Chen, Z., Zhou, R., & Jiang, J. (2022). Multi-element synergistic effects to improve the flame retardancy of high impact polystyrene. Polymer Testing, 115, 107766.
Vilaseca, F., López, A., Llauró, X., PèLach, M. A., & Mutjé, P. (2004). Hemp strands as reinforcement of polystyrene composites. Chemical Engineering Research and Design, 82(11), 1425–1431.
Wang, M., & Zhao, Q. (2019). Biomedical composites. In R. Narayan (Ed.), Encyclopedia of Biomedical Engineering (pp. 34–52). Elsevier.
Wei, D. W., Wei, H., Gauthier, A. C., Song, J., Jin, Y., & Xiao, H. (2020). Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. Journal of Bioresources and Bioproducts, 5(1), 1–15.
Yudha, S. P., Latief, R. R., & Aziz, I. S. (2023). The effect of using oil palm empty fruit bunch fibers as reinforcement on the mechanical properties of composites. Prosiding Seminar Nasional Teknologi Industri (SNTI), 10(1), 336–339.
DOI: http://dx.doi.org/10.62870/jip.v13i2.28392
Refbacks
- There are currently no refbacks.
Jurnal integrasi Proses (JIP) has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.