PENGARUH KOMBINASI PRETREATMENT, HIDROLISIS, DAN FERMENTASI TERHADAP PRODUKSI BIOETANOL DARI LIMBAH PADAT AREN
Abstract
Keterbatasan sumber daya berbasis fosil mendorong pencarian bahan bakar alternatif yang lebih berkelanjutan, salah satunya bioetanol dari limbah biomassa. Limbah padat aren, hasil samping dari ekstraksi nira, memiliki potensi besar sebagai bahan baku bioetanol meskipun kandungan ligninnya yang tinggi menghambat proses hidrolisis. Penelitian ini bertujuan mengevaluasi pengaruh kombinasi pretreatment, hidrolisis, dan fermentasi terhadap produksi bioetanol. Pretreatment menggunakan kombinasi asam sulfat (H₂SO₄) 5% dan organosolv dengan etanol dilakukan untuk meningkatkan delignifikasi. Pada hidrolisis, enzim selulase Trichoderma reesei dan xilanase digunakan untuk mengubah hemiselulosa dan selulosa menjadi gula reduksi. Dalam proses fermentasi, Saccharomyces cerevisiae dan S. cerevisiae - Pichia stipitis digunakan untuk mengubah gula menjadi bioetanol. Hasil menunjukkan delignifikasi tertinggi dicapai pada pretreatment H₂SO₄ 5% dan organosolv selama 60 menit. Yield bioetanol tertinggi (0,26%) diperoleh dengan kombinasi S. cerevisiae dan P. stipitis selama fermentasi 72 jam. Penelitian ini menunjukkan bahwa kombinasi proses pretreatment dan hidrolisis secara efektif dapat digunakan untuk mengkonversi limbah padat aren menjadi bioetanol.
Keywords
Full Text:
PDFReferences
Ansar, Nazaruddin, Azis, A. D., & Fudholi, A. (2021). Enhancement of bioethanol production from palm sap (Arenga pinnata (Wurmb) Merr) through optimization of Saccharomyces cerevisiae as an inoculum. Journal of Materials Research and Technology, 14, 548–554. https://doi.org/10.1016/j.jmrt.2021.06.085
Ansar, Sukmawaty, Abdullah, S. H., Nazaruddin, & Safitri, E. (2020). Physical and chemical properties of a mixture fuel between palm sap (Arenga pinnata Merr) bioethanol and premium fuel. ACS Omega, 5(22), 12745–12750. https://doi.org/10.1021/acsomega.0c00247
Da Silva Fernandes, F., De Souza, É. S., Carneiro, L. M., Alves Silva, J. P., De Souza, J. V. B., & Da Silva Batista, J. (2022). Current ethanol production requirements for the yeast Saccharomyces cerevisiae. International Journal of Microbiology, 2022. https://doi.org/10.1155/2022/7878830
Dewi, A. S., Stevanus, R. A., Sandra, M. A., Nury, D. F., Pudjiastuti, L., & Widjaja, T. (2019). The effect of mixed culture of zymomonas mobilis and pichia stipitis in ethanol production of sugar palm (Arenga pinnata). Materials Science Forum, 964 MSF, 145–150. https://doi.org/10.4028/www.scientific.net/MSF.964.145
Hans, M., Pellegrini, V. O. A., Filgueiras, J. G., de Azevedo, E. R., Guimaraes, F. E. C., Chandel, A. K., Polikarpov, I., Chadha, B. S., & Kumar, S. (2023). Optimization of dilute acid pretreatment for enhanced release of fermentable sugars from sugarcane bagasse and validation by biophysical characterization. Bioenergy Research, 16(1), 416–434. https://doi.org/10.1007/s12155-022-10474-6
Herawati, D. A., Kusumawardhani, E., & Puspawati, N. (2016). Pemanfaatan limbah ampas pati aren menjadi bioetanol secara enzimatis metode konvensional dan SFF (Simultaneous of ssaccarification and fermentation). Simposium Nasional RAPI XV, 37–45.
Lini, F. Z. (2015). Studi teknik produksi etanol dari limbah kulit buah kopi (Parchment hull/endocarp ).
Lini, F. Z., Widjaja, T., Hendrianie, N., Altway, A., Nurkhamidah, S., & Tansil, Y. (2018). The effect of organosolv pretreatment on optimization of hydrolysis process to produce the reducing sugar. MATEC Web of Conferences, 154. https://doi.org/10.1051/matecconf/201815401022
Martínez-Trujillo, M. A., Bautista-Rangel, K., García-Rivero, M., Martínez-Estrada, A., & Cruz-Díaz, M. R. (2020). Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess and Biosystems Engineering, 43(3), 413–427. https://doi.org/10.1007/s00449-019-02237-z
Mateo, W., Lei, H., Villota, E., Qian, M., Zhao, Y., Huo, E., Zhang, Q., Lin, X., & Wang, C. (2021). One-step synthesis of biomass-based sulfonated carbon catalyst by direct carbonization-sulfonation for organosolv delignification. Bioresource Technology, 319. https://doi.org/10.1016/j.biortech.2020.124194
Nury, D. F., Luthfi, M. Z., Farohi, A. R., & Widjaja, T. (2023). Pengaruh pre-treatment kimia dan biologi terhadap produksi biogas dari kulit kopi. Journal of Research on Chemistry and Engineering, 4(2), 47–53.
Pandey, A. K., & Negi, S. (2015). Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresource Technology, 192, 115–125. https://doi.org/10.1016/j.biortech.2015.04.054
Permanasari, A. R., Yulistiani, F., Purnama, R. W., Widjaja, T., & Gunawan, S. (2018). The effect of substrate and enzyme concentration on the glucose syrup production from red sorghum starch by enzymatic hydrolysis. IOP Conference Series: Earth and Environmental Science, 160(1). https://doi.org/10.1088/1755-1315/160/1/012002
Purnavita, S., Sriyana, herman yoseph, & Hartini, S. (2017). Produksi poli asam laktat dari limbah ampas pati aren sari. Jurnal Momentum, 13(21), 53–56.
Salapa, I., Katsimpouras, C., Topakas, E., & Sidiras, D. (2017). Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass and Bioenergy, 100, 10–16. https://doi.org/10.1016/j.biombioe.2017.03.011
Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 54, 533–549. https://doi.org/10.1016/j.rser.2015.10.037
Sritrakul, N., Nitisinprasert, S., & Keawsompong, S. (2017). Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith. Agriculture and Natural Resources, 51(6), 512–519. https://doi.org/10.1016/j.anres.2017.12.006
Tana, T., Zhang, Z., Moghaddam, L., Rackemann, D. W., Rencoret, J., Gutiérrez, A., Del Río, J. C., & Doherty, W. O. S. (2016). Structural changes of sugar cane bagasse lignin during cellulosic ethanol production process. ACS Sustainable Chemistry and Engineering, 4(10), 5483–5494. https://doi.org/10.1021/acssuschemeng.6b01093
Widjaja, T., Altway, A., Ni’Mah, H., Tedji, N., & Rofiqah, U. (2015). Technique of ethanol food grade production with batch distillation and dehydration using starch-based adsorbent. AIP Conference Proceedings, 1699. https://doi.org/10.1063/1.4938295
Widjaja, T., Altway, A., Nury, D. F., & Iswanto, T. (2019). Optimization of fermentation to enhance ethanol production from palmyra sap (borassus flabellifer) using Saccharomyces cerevisiae. ARPN Journal of Engineering and Applied Sciences, 14(5), 967–973.
Widjaja, T., Iswanto, T., Agustiani, E., Altway, A., Martha, B., Silaban, J., & Yuwono, L. F. (2017). Optimization of palmyra palmsap fermentation using co-culture of Saccharomyces cerevisiae and Pichia stipitis. 12(23), 6817–6824.
Yoo, C. G., Li, M., Meng, X., Pu, Y., & Ragauskas, A. J. (2017). Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 19(8), 2006–2016. https://doi.org/10.1039/c6gc03627a
DOI: http://dx.doi.org/10.62870/jip.v13i2.28466
Refbacks
- There are currently no refbacks.
Jurnal integrasi Proses (JIP) has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.