OPTIMIZATION OF REMAZOL RED DYE REMOVAL PERFORMANCE USING AEROBIC GRANULAR SLUDGE IN A SEQUENCING BATCH REACTOR

Andri Sanjaya, Feerzet Achmad, Bagus Robianto, Ahyatul Ihsan, Andreas Dwi Nugroho, Nelson Alfares, Damayanti Damayanti, Yunita Fahni, Deviany Deviany, Desi Riana Saputri

Abstract


Textile wastewater pollution, mainly containing azo dyes such as Remazol Red, presents an environmental challenge in developing countries, including Indonesia. Although various wastewater treatment methods have been extensively studied, biological treatment efficiency at high dye concentrations remains challenging. In this context, aerobic granular sludge (AGS) technology in sequencing batch reactors (SBR) offers a potential solution. However, the existing knowledge gap lies in optimizing operating conditions for optimal dye degradation. This study demonstrates the use of response surface methodology (RSM) with a Box-Behnken design (BBD) to model the effects of independent variables such as aeration time, dye concentration, and COD on decolorization efficiency. Experimental results show that increasing aeration time and COD concentration significantly improve dye degradation, with an optimal decolorization value of 77% achieved at a COD concentration of 1000 mg/L and an aeration time of 24 hours. These findings imply that AGS-SBR technology can be further optimized for effective textile wastewater treatment on various industrial scales. 


Keywords


Aerobic granular sludge; Decolorization; Remazol red; Sequencing batch reactor; Textile wastewater

Full Text:

PDF

References


Alimohammadi, V., Sedighi, M., & Jabbari, E. (2016). Response surface modeling and optimization of nitrate removal from aqueous solutions using magnetic multi-walled carbon nanotubes. Journal of Environmental Chemical Engineering, 4(4), 4525–4535. https://doi.org/10.1016/j.jece.2016.10.017

Aziz, S. Q., Aziz, H. A., Yusoff, M. S., & Bashir, M. J. K. (2011). Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology. Journal of Hazardous Materials, 189(1–2), 404–413. https://doi.org/10.1016/j.jhazmat.2011.02.052

Benkhaya, S., M’ rabet, S., & El Harfi, A. (2020a). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. https://doi.org/10.1016/j.inoche.2020.107891

Benkhaya, S., M’rabet, S., & El Harfi, A. (2020b). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2020.e03271

Birgani, P. M., Ranjbar, N., Abdullah, R. C., Wong, K. T., Lee, G., Ibrahim, S., Park, C., Yoon, Y., & Jang, M. (2016). An efficient and economical treatment for batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide, and palm shell-based activated carbon application. Journal of Environmental Management, 184, 229–239. https://doi.org/10.1016/j.jenvman.2016.09.066

Bisheh, F. N., Amini, M., Abyar, H., Attenborough, N. K., Ling, I., Salamatinia, B., Younesi, H., & Zinatizadeh, A. A. (2021). Response surface methodology approach for simultaneous carbon, nitrogen, and phosphorus removal from industrial wastewater in a sequencing batch reactor. Advances in Environmental Technology, 7(2), 119–136. https://doi.org/10.22104/AET.2021.5093.1383

Buthelezi, S. P., Olaniran, A. O., & Pillay, B. (2012). Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17(12), 14260–14274. https://doi.org/10.3390/molecules171214260

Chang, S. H., Chuang, S. H., Li, H. C., Liang, H. H., & Huang, L. C. (2009). Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C. Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. Journal of Hazardous Materials, 166(2–3), 1279–1288. https://doi.org/10.1016/j.jhazmat.2008.12.042

Costa, J. A. S., & Paranhos, C. M. (2019). Evaluation of rice husk ash in adsorption of Remazol Red dye from aqueous media. SN Applied Sciences, 1(5), 1–8. https://doi.org/10.1007/s42452-019-0436-1

Fernandes, H., Jungles, M. K., Hoffmann, H., Antonio, R. V., & Costa, R. H. R. (2013). Full-scale sequencing batch reactor (SBR) for domestic wastewater: Performance and diversity of microbial communities. Bioresource Technology, 132, 262–268. https://doi.org/10.1016/j.biortech.2013.01.027

Geng, M., Ma, F., Guo, H., & Su, D. (2020). Enhanced aerobic sludge granulation in a sequencing batch reactor (SBR) by applying mycelial pellets. Journal of Cleaner Production, 123037. https://doi.org/10.1016/j.jclepro.2020.123037

Kusumawati, N., Rahmadyanti, E., & Sianita, M. M. (2020). Batik became two sides of blade for the sustainable development in Indonesia. In Green Chemistry and Water Remediation: Research and Applications (pp. 59–97). Elsevier. https://doi.org/10.1016/B978-0-12-817742-6.00003-7

Lawal, I. M., Soja, U. B., Hussaini, A., Saleh, D., Aliyu, M., Noor, A., Birniwa, A. H., & Jagaba, A. H. (2023). Sequential batch reactors for aerobic and anaerobic dye removal: A mini-review. Case Studies in Chemical and Environmental Engineering, 8(September), 100547. https://doi.org/10.1016/j.cscee.2023.100547

Liu, Y. Q., & Tay, J. H. (2015). Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Water Research, 80, 256–266. https://doi.org/10.1016/j.watres.2015.05.015

Mady, E., Oleszkiewicz, J., & Yuan, Q. (2024). Simultaneous biological nutrients removal from wastewater with high ammonium and phosphorus loading using aerobic granular sludge. Journal of Water Process Engineering, 64(April), 105650. https://doi.org/10.1016/j.jwpe.2024.105650

Manekar, P., Patkar, G., Aswale, P., Mahure, M., & Nandy, T. (2014). Detoxifying of high strength textile effluent through chemical and bio-oxidation processes. Bioresource Technology, 157, 44–51. https://doi.org/10.1016/j.biortech.2014.01.046

Mustafa, G., Zahid, M. T., Kurade, M. B., Alvi, A., Ullah, F., Yadav, N., Park, H. K., Khan, M. A., & Jeon, B. H. (2024). Microalgal and activated sludge processing for biodegradation of textile dyes. Environmental Pollution, 349(April), 123902. https://doi.org/10.1016/j.envpol.2024.123902

Nancharaiah, Y. V., Sarvajith, M., & Krishna Mohan, T. V. (2019). Aerobic granular sludge: The future of wastewater treatment. Current Science, 117(3), 395–404. https://doi.org/10.18520/cs/v117/i3/395-404

Putri, F. E., Mulyati, S. S., Saputra, A. S., & Fikri, E. (2019). Perbedaan waktu operasional aerator lumpur aktif terhadap kadar COD limbah cair industri susu. Jurnal Riset Kesehatan, 11(1), 207–210.

Rashidi, H. R., Sulaiman, N. M. N., & Hashim, N. A. (2012). Batik Industry synthetic wastewater treatment using nanofiltration membrane. Procedia Engineering, 44, 2010–2012. https://doi.org/10.1016/j.proeng.2012.09.025

Roy, M., & Saha, R. (2020). Dyes and their removal technologies from wastewater: A critical review. In Intelligent Environmental Data Monitoring for Pollution Management. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819671-7.00006-3

Saksono, N., Putri, D. A., & Suminar, D. R. (2017). Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes. AIP Conference Proceedings, 1823. https://doi.org/10.1063/1.4978077

Sathian, S., Rajasimman, M., Radha, G., Shanmugapriya, V., & Karthikeyan, C. (2014). Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies. Alexandria Engineering Journal, 53(2), 417–426. https://doi.org/10.1016/j.aej.2014.03.003

Sengupta, S. (2013). 3.3 Reaction Kinetics and Reactors. Comprehensive Water Quality and Purification, 3, 30–46. https://doi.org/10.1016/B978-0-12-382182-9.00044-X

Sharfan, N., Shobri, A., Anindria, F. A., Mauricio, R., Tafsili, M. A. B., & Slamet. (2018). Treatment of batik industry waste with a combination of electrocoagulation and photocatalysis. International Journal of Technology, 9(5), 936–943. https://doi.org/10.14716/ijtech.v9i5.618

Show, K. Y., Yan, Y. G., Zhao, J., Shen, J., Han, Z. X., Yao, H. Y., & Lee, D. J. (2020). Laboratory trial and full-scale implementation of integrated anaerobic-aerobic treatment for high strength acrylic acid wastewater. Science of the Total Environment, 738. https://doi.org/10.1016/j.scitotenv.2020.140323

Sood, S., Singhal, R., Bhat, S., & Kumar, A. (2019). Inoculum preparation. In Comprehensive Biotechnology (Third Edit, Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-444-64046-8.00076-8

Syafiuddin, A., Boopathy, R., & Hadibarata, T. (2020). Challenges and Solutions for Sustainable Groundwater Usage: Pollution Control and Integrated Management. Current Pollution Reports, 6(4), 310–327. https://doi.org/10.1007/s40726-020-00167-z

Szatylowicz, H., Stasyuk, O. A., & Krygowski, T. M. (2016). Calculating the aromaticity of heterocycles. In Advances in Heterocyclic Chemistry (Vol. 120, pp. 301-327). Academic Press.

Truong, H. T. B., Nguyen, P. Van, Nguyen, P. T. T., & Bui, H. M. (2018). Treatment of tapioca processing wastewater in a sequencing batch reactor: Mechanism of granule formation and performance. Journal of Environmental Management, 218, 39–49. https://doi.org/10.1016/j.jenvman.2018.04.041

Xavier, R. da S., Barbosa, P. T., dos Santos, A. B., da Silva, M. E. R., & Firmino, P. I. M. (2023). Evaluation of the decolorization potential of azo dyes by aerobic granular sludge. Chemical Engineering Research and Design, 195, 207–217. https://doi.org/10.1016/j.cherd.2023.05.055

Xu, D., Liu, J., Ma, T., Gao, Y., Zhang, S., & Li, J. (2021). Rapid granulation of aerobic sludge in a continuous-flow reactor with a two-zone sedimentation tank by the addition of dewatered sludge. Journal of Water Process Engineering, 41(March), 101941. https://doi.org/10.1016/j.jwpe.2021.101941

Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer Berlin Heidelberg. https://doi.org/10.1007/s13762-018-2130-z




DOI: http://dx.doi.org/10.62870/jip.v14i1.28880

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.