A REVIEW OF DEEP EUTECTIC SOLVENTS IN GREEN EXTRACTION OF CHITOSAN: COMPOSITION, EFFICIENCY, AND RECYCLABILITY
Abstract
Chitosan, a biopolymer derived from chitin-rich biomass such as crustacean shells, has garnered attention for its biodegradability, biocompatibility, and wide-ranging applications. However, conventional chemical extraction methods relying on strong acids and bases pose significant environmental and safety concerns, often leading to molecular degradation and low product quality. This study explores the use of deep eutectic solvents (DESs) as a green alternative for chitosan extraction. DESs, formed from combinations of hydrogen bond donors and acceptors, offer tunable properties, lower toxicity, and recyclability. The article highlights the structural advantages, extraction efficiency, and environmental benefits of DESs over conventional methods. It also examines the integration of process intensification technologies, such as microwave and ultrasound-assisted extraction, to enhance yield and reduce energy consumption. The findings underscore DESs’ potential to produce high-purity chitosan while supporting sustainability goals and industrial scalability, offering a viable pathway toward eco-friendly biopolymer processing.
Keywords
Full Text:
PDFReferences
Abbas, M. A., & Al-Shammari, R. H. H. (2022). Antibacterial activity of chitosan extracted from Mucor rouxii. Journal for Research in Applied Sciences and Biotechnology, 1(5), 110–119. https://doi.org/10.55544/jrasb.1.5.12
Abbott, A. P., Cullis, P. M., Gibson, M. J., Harris, R. C., & Raven, E. L. (2007). Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chemistry, 9(8), 868. https://doi.org/10.1039/b702833d
Abd El-Ghany, M. N., Hamdi, S. A., Zahran, A. K., Abou-Taleb, M. A., Heikel, A. M., Abou El-Kheir, M. T., & Farahat, M. G. (2025). Characterization of novel cold-active chitin deacetylase for green production of bioactive chitosan. AMB Express, 15(1), 5. https://doi.org/10.1186/s13568-024-01804-2
Abdulbari, H. A., & Basheer, E. A. M. (2019). Microfluidics chip for directional solvent extraction desalination of seawater. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49071-7
Abidin, N. A. Z., Kormin, F., Abidin, N. A. Z., Nor Aini Fatihah Mohamed Anuar, & Bakar, M. F. A. (2020). The potential of insects as alternative sources of chitin: An overview on the chemical method of extraction from various sources. International Journal of Molecular Sciences, 21(14), 4978. https://doi.org/10.3390/ijms21144978
Aboshatta, M., & Magueijo, V. (2021). A comprehensive study of CO2 absorption and desorption by choline-chloride/levulinic-acid-based deep eutectic solvents. Molecules, 26(18), 5595. https://doi.org/10.3390/molecules26185595
Abranches, D. O., Schaeffer, N., Silva, L. P., Martins, M. A. R., Pinho, S. P., & Coutinho, J. A. P. (2019). The role of charge transfer in the formation of type I deep eutectic solvent-analogous ionic liquid mixtures. Molecules, 24(20), 3687. https://doi.org/10.3390/molecules24203687
Ahing, F. A., & Wid, N. (2016). Optimization of shrimp shell waste deacetylation for chitosan production. International Journal of Advanced and Applied Sciences, 3(10), 31–36. https://doi.org/10.21833/ijaas.2016.10.006
AlYammahi, J., Darwish, A. S., Lemaoui, T., Boublia, A., Benguerba, Y., AlNashef, I. M., & Banat, F. (2023). Molecular guide for selecting green deep eutectic solvents with high monosaccharide solubility for food applications. ACS Omega, 8(29), 26533–26547. https://doi.org/10.1021/acsomega.3c03326
Amaral, R. A. G., Tonhela, M. A., Antonelli, R. Q., Okura, M. H., Malpass, G. R. P., & Granato, A. C. (2021). Experimental design for ultrasound-assisted extraction of Schinus terebinthifolius. Research Society and Development, 10(3), e26210312872. https://doi.org/10.33448/rsd-v10i3.12872
Apriyanti, D. T., Susanto, H., & Rokhati, N. (2018). Influence of microwave irradiation on extraction of chitosan from shrimp shell waste. Reaktor, 18(1), 45. https://doi.org/10.14710/reaktor.18.1.45-50
Arpi, N., Fahrizal, F., Lubis, Y. M., Asmawati, A., Fayyadh, M. T., & Atmajaya, Y. (2022). Screening factors affecting chitosan extraction from mud crab (Scylla Sp.) shell using microwave irradiation for the response surface approach. IOP Conference Series Earth and Environmental Science, 951(1), 012102. https://doi.org/10.1088/1755-1315/951/1/012102
Beaney, P., Lizardi-Mendoza, J., & Healy, M. (2005). Comparison of chitins produced by chemical and bioprocessing methods. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80(2), 145–150.
Belwal, T., Chemat, F., Venskutonis, P. R., Cravotto, G., Jaiswal, D. K., Bhatt, I. D., Devkota, H. P., & Luo, Z. (2020). Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends in Analytical Chemistry, 127, 115895. https://doi.org/10.1016/j.trac.2020.115895
Ben Aoun, R., Trabelsi, N., Abdallah, M., Mourtzinos, I., & Mhamdi, R. (2024). Towards a greener future: Exploring the challenges of extraction of chitin and chitosan as bioactive polysaccharides. Materials Today Communications, 39, 108761. https://doi.org/10.1016/j.mtcomm.2024.108761
Bi Foua Claude Alain Gohi, Zeng, H., & Pan, A. (2016). Optimization and characterization of chitosan enzymolysis by pepsin. Bioengineering, 3(3), 17. https://doi.org/10.3390/bioengineering3030017
Bisht, M., Macário, I. P. E., Neves, M. C., Pereira, J. L., Pandey, S., Rogers, R. D., Coutinho, J. A. P., & Ventura, S. P. M. (2021). Enhanced dissolution of chitin using acidic deep eutectic solvents: A sustainable and simple approach to extract chitin from crayfish shell wastes as alternative feedstocks. ACS Sustainable Chemistry & Engineering, 9(48), 16073–16081. https://doi.org/10.1021/acssuschemeng.1c04255
Boggia, R., Turrini, F., Villa, C., Lacapra, C., Zunin, P., & Parodi, B. (2016). Green extraction from pomegranate marcs for the production of functional foods and cosmetics. Pharmaceuticals, 9(4), 63. https://doi.org/10.3390/ph9040063
Bradić, B., Novak, U., & Likozar, B. (2019). Crustacean shell bio-refining to chitin by natural deep eutectic solvents. Green Processing and Synthesis, 9(1), 13–25. https://doi.org/10.1515/gps-2020-0002
Calvo-Flores, F. G., Monteagudo-Arrebola, M. J., Dobado, J. A., & Isac-García, J. (2018). green and bio-based solvents. Topics in Current Chemistry, 376(3), 18. https://doi.org/10.1007/s41061-018-0191-6
Cambiaso, S. (2025). Martini 3 coarse-grained model for chitosan with tunable acetylation. https://doi.org/10.26434/chemrxiv-2025-qb3n5
Cao, R., Liu, Q., Yin, B., & Wu, B. (2012). Chitosan extends the shelf-life of filleted tilapia (Oreochromis niloticus) during refrigerated storage. Journal of Ocean University of China, 11(3), 408–412.
Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615
Coscarella, M., Nardi, M., Alipieva, K., Bonacci, S., Popova, M., Procopio, A., Scarpelli, R., & Simeonov, S. P. (2023). Alternative assisted extraction methods of phenolic compounds using NaDESs. Antioxidants, 13(1), 62. https://doi.org/10.3390/antiox13010062
Doherty, B., & Acevedo, O. (2018). OPLS force field for choline chloride-based deep eutectic solvents. The Journal of Physical Chemistry B, 122(43), 9982–9993. https://doi.org/10.1021/acs.jpcb.8b06647
Dong, Q., Qiu, W., Feng, Y., Jin, Y., Deng, S., Tao, N., & Jin, Y. (2023). Proteases and microwave treatment on the quality of chitin and chitosan produced from white shrimp (Penaeus vannamei). Efood, 4(2). https://doi.org/10.1002/efd2.73
Durante-Salmerón, D. A., Fraile-Gutiérrez, I., Gil-Gonzalo, R., Acosta, N., Aranaz, I., & Alcántara, A. R. (2024). Strategies to prepare chitin and chitosan-based bioactive structures aided by deep eutectic solvents: A review. Catalysts, 14(6), 371. https://doi.org/10.3390/catal14060371
Egorov, A. R., Kirichuk, A. A., Рубаник, В. В., Tskhovrebov, A. G., & Kritchenkov, A. S. (2023). Chitosan and its derivatives: Preparation and antibacterial properties. Materials, 16(18), 6076. https://doi.org/10.3390/ma16186076
Eleršek, T., Flisar, K., Likozar, B., Klemenčič, M., Golob, J., Kotnik, T., & Miklavčič, D. (2020). Electroporation as a solvent-free green technique for non-destructive extraction of proteins and lipids from Chlorella vulgaris. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00443
Espino, M., María de los Ángeles Fernández, Gómez, F. J., & Silva, M. F. (2016). Natural designer solvents for greening analytical chemistry. TrAC Trends in Analytical Chemistry, 76, 126–136. https://doi.org/10.1016/j.trac.2015.11.006
Ferreira, C., Moreira, M. M., Delerue‐Matos, C., & Sarraguça, M. C. (2023). Subcritical water extraction to valorize grape biomass—A step closer to circular economy. Molecules, 28(22), 7538. https://doi.org/10.3390/molecules28227538
Fraige, K., Arrua, R. D., Sutton, A. T., Funari, C. S., Cavalheiro, A. J., Hilder, E. F., & Bolzani, V. d. S. (2018). Using natural deep eutectic solvents for the extraction of metabolites in byrsonima intermedia leaves. Journal of Separation Science, 42(2), 591–597. https://doi.org/10.1002/jssc.201800905
García, G., Aparício, S., Ullah, R., & Atilhan, M. (2015). Deep eutectic solvents: physicochemical properties and gas separation applications. Energy & Fuels, 29(4), 2616–2644. https://doi.org/10.1021/ef5028873
Gîjiu, C. L., Isopescu, R., Dinculescu, D., Memecică, M., Apetroaei, M.-R., Anton, M., Schröder, V., & Rău, I. (2022). Crabs marine waste—A valuable source of chitosan: tuning chitosan properties by chitin extraction optimization. Polymers, 14(21), 4492. https://doi.org/10.3390/polym14214492
Güler, B. A., Tepe, U., & İmamoğlu, E. (2024). Sustainable point of view: Life cycle analysis for green extraction technologies. Chembioeng Reviews, 11(2), 348–362. https://doi.org/10.1002/cben.202300056
Halder, A. K. & M. Natália D. S. Cordeiro. (2019). Probing the environmental toxicity of deep eutectic solvents and their components: An in silico modeling approach. ACS Sustainable Chemistry & Engineering, 7(12), 10649–10660. https://doi.org/10.1021/acssuschemeng.9b01306
Hammond, O. S., Bowron, D. T., & Edler, K. J. (2016). Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chemistry, 18(9), 2736–2744. https://doi.org/10.1039/c5gc02914g
Hao, H., Lin, L., Shun, L., Kang, Y., Wang, Y., Huang, J., & Weng, W. (2021). Deep eutectic solvent-based microwave-assisted extraction for the chromatographic analysis of bioactive flavonoids in spirodela polyrrhiza. Journal of Chromatographic Science, 60(5), 501–510. https://doi.org/10.1093/chromsci/bmab092
Hariyanto, Y., Ng, Y. K., Siew, Z. Z., Soon, C. Y., Fisher, A. C., Kloyer, L., Wong, C. W., & Chan, E. W. C. (2023). Deep eutectic solvents for batteries and fuel cells: Biosubstitution, advantages, challenges, and future directions. Energy & Fuels, 37(23), 18395–18407. https://doi.org/10.1021/acs.energyfuels.3c02870
Hegde, S., & Selvaraj, S. (2024). Chitosan: An in-depth analysis of its extraction, applications, constraints, and future prospects. Journal of Microbiology Biotechnology and Food Sciences, e10563. https://doi.org/10.55251/jmbfs.10563
Hemmami, H., Amor, I. B., Amor, A. B., Zeghoud, S., Ahmed, S., & Alhamad, A. A. (2024). Chitosan, its derivatives, sources, preparation methods, and applications: A review. Journal of the Turkish Chemical Society Section a Chemistry, 11(1), 341–364. https://doi.org/10.18596/jotcsa.1336313
Hong, S., Doughty, R. M., Osterloh, F. E., & Zaikina, J. V. (2019). Deep eutectic solvent route synthesis of zinc and copper vanadate n-type semiconductors – mapping oxygen vacancies and their effect on photovoltage. Journal of Materials Chemistry A, 7(19), 12303–12316. https://doi.org/10.1039/c9ta00957d
Hossain, M., & Iqbal, A. (2014). Production and characterization of chitosan from shrimp waste. Journal of the Bangladesh Agricultural University, 12(1), 153–160. https://doi.org/10.3329/jbau.v12i1.21405
Huang, H.-J., Ramaswamy, S., Tschirner, U. W., & Ramarao, B. V. (2008). A review of separation technologies in current and future biorefineries. Separation and Purification Technology, 62(1), 1–21.
Huang, W., Zhao, D., Guo, N., Xue, C., & Mao, X. (2018). Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. Journal of Agricultural and Food Chemistry, 66(45), 11897–11901. https://doi.org/10.1021/acs.jafc.8b03847
Ibrahim, M. A., Mostafa, S. M., & Ibrahim, S. M. (2019). Effect of some extraction techniques on properties and economic of chitosan obtained from shrimp shells waste. Egyptian Journal of Aquatic Biology and Fisheries, 23(2), 123–131.
Ijardar, S. P., Singh, V., & Gardas, R. L. (2022). Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules, 27(4), 1368. https://doi.org/10.3390/molecules27041368
Isci, A., & Kaltschmitt, M. (2022). Recovery and recycling of deep eutectic solvents in biomass conversions: A review. Biomass Conversion and Biorefinery, 12(S1), 197–226. https://doi.org/10.1007/s13399-021-01860-9
Jeong, K. M., Lee, M. S., Nam, M. W., Zhao, J., Jin, Y., Lee, D., Kwon, S. W., Jeong, J. H., & Lee, J. (2015). Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. Journal of Chromatography A, 1424, 10–17. https://doi.org/10.1016/j.chroma.2015.10.083
Kaur, S., & Dhillon, G. S. (2013). Recent trends in biological extraction of chitin from marine shell wastes: A review. Critical Reviews in Biotechnology, 35(1), 44–61. https://doi.org/10.3109/07388551.2013.798256
Khandelwal, S., Tailor, Y. K., & Kumar, M. (2016). Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. Journal of Molecular Liquids, 215, 345–386.
Kianpour, A., Omar, K. A., & Sadeghi, R. (2022). Novel deep eutectic solvents: Physical properties and their application in amino acid detection. Journal of Chemical & Engineering Data, 67(6), 1421–1427. https://doi.org/10.1021/acs.jced.2c00152
Kim, H., Kim, H., Ahn, Y., Hong, K., Kim, I.-W., Choi, R., Suh, H. J., & Han, S. (2023). The preparation and physiochemical characterization of tenebrio molitor chitin using alcalase. Molecules, 28(7), 3254. https://doi.org/10.3390/molecules28073254
Kim, K. H., Wang, Y., Takada, M., Eudes, A., Yoo, C. G., Kim, C. S., & Saddler, J. (2020). Deep eutectic solvent pretreatment of transgenic biomass with increased C6C1 lignin monomers. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01774
Kim, S. (2018). Evaluation of alkali-pretreated soybean straw for lignocellulosic bioethanol production. International Journal of Polymer Science, 2018, 1–7. https://doi.org/10.1155/2018/5241748
Kimi, M., & Hamdi, M. H. (2023). Direct extraction of chitosan from snail shells by natural deep eutectic solvent. Current Chemistry Letters, 12(2), 275–280. https://doi.org/10.5267/j.ccl.2023.1.001
Kumar, N., & Banerjee, T. (2021). Dearomatization insights with phosphonium-based deep eutectic solvent: liquid–liquid equilibria experiments and predictions. Journal of Chemical & Engineering Data, 66(9), 3432–3442. https://doi.org/10.1021/acs.jced.1c00241
Kyriakidou, A., Makris, D. P., Lazaridou, A., Βiliaderis, C. G., & Mourtzinos, I. (2021). Physical properties of chitosan films containing pomegranate peel extracts obtained by deep eutectic solvents. Foods, 10(6), 1262. https://doi.org/10.3390/foods10061262
Li, X., & Row, K. H. (2016). Development of deep eutectic solvents applied in extraction and separation. Journal of Separation Science, 39(18), 3505–3520. https://doi.org/10.1002/jssc.201600633
Li, Z., Liu, C., Hong, S., Lian, H., Mei, C., Lee, J., Wu, Q., Hubbe, M. A., & Li, M.-C. (2022). Recent advances in extraction and processing of chitin using deep eutectic solvents. Chemical Engineering Journal, 446, 136953.
Ling, J. K. U., & Hadinoto, K. (2022). Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review. International Journal of Molecular Sciences, 23(6), 3381.
Liu, H., Dai, S., Li, J., Ma, R., Cao, Y., Wang, G., Komarneni, S., & Luo, J. (2020). Removal of Cu2+ from water using liquid‐liquid microchannel extraction. Chemical Engineering & Technology, 43(5), 974–982. https://doi.org/10.1002/ceat.201900168
Maddaloni, M., Vassalini, I., & Alessandri, I. (2020). Green routes for the development of chitin/chitosan sustainable hydrogels. Sustainable Chemistry, 1(3), 325–344. https://doi.org/10.3390/suschem1030022
Mahaindran, A., Meng, X. Q., Tee, L. H., Chua, B. L., & Oh, K. S. (2023). A new green solvent: Synthesis and characterization of natural-deep-eutectic-solvent (NADES) for application on aqueous-two-phase system (ATPS) for Extraction of anthocyanin. Materials Science Forum, 1111, 105–110. https://doi.org/10.4028/p-mumd2p
Mahmood, H., & Moniruzzaman, M. (2019). Recent advances of using ionic liquids for biopolymer extraction and processing. Biotechnology Journal, 14(12). https://doi.org/10.1002/biot.201900072
Makris, D. P., & Lalas, S. I. (2020). Glycerol and glycerol-based deep eutectic mixtures as emerging green solvents for polyphenol extraction: The evidence so far. Molecules, 25(24), 5842. https://doi.org/10.3390/molecules25245842
McReynolds, C., Adrien, A., Fraissinette, N. B. d., Olza, S., & Fernandes, S. C. M. (2022). Deep eutectic solvents for the extraction of β-chitin from Loligo Vulgaris squid pens: A sustainable way to valorize fishery by-products. Biomass Conversion and Biorefinery, 14(13), 13847–13859. https://doi.org/10.1007/s13399-022-03569-9
Mohan, K., Ganesan, A. R., Ezhilarasi, P. N., Kondamareddy, K. K., Rajan, D. K., Sathishkumar, P., Rajarajeswaran, J., & Conterno, L. (2022). Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydrate Polymers, 287, 119349. https://doi.org/10.1016/j.carbpol.2022.119349
Morais, E. S., André M. da Costa Lopes, Freire, M. G., Freire, C. S. R., Coutinho, J. A. P., & Silvestre, A. J. D. (2020). Use of ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization. Molecules, 25(16), 3652. https://doi.org/10.3390/molecules25163652
Morina, R., Callegari, D., Merli, D., Alberti, G., Mustarelli, P., & Quartarone, E. (2021). Cathode active material recycling from spent lithium batteries: a green (circular) approach based on deep eutectic solvents. Chemsuschem, 15(2). https://doi.org/10.1002/cssc.202102080
Mukherjee, A., Pal, S., Parhi, S., Karki, S., Ingole, P. G., & Ghosh, P. (2023). One-pot extraction of bioresources from human hair via a zero-waste green route. ACS Omega, 8(17), 15759–15768. https://doi.org/10.1021/acsomega.3c01428
Nakasu, P. Y. S., Piccoli, V., Ovejero-Pérez, A., Kumar, P., Ghatta, A. A., Melanie, S., Polesca, C., Martı́nez, L., & Hallett, J. P. (2025). Fractionation of squid pens with ionic liquids─an upgraded β-chitin and shellfish protein production. Acs Sustainable Chemistry & Engineering, 13(7), 2649–2660. https://doi.org/10.1021/acssuschemeng.4c04217
Nardo, T. D., Hadad, C., Nhien, A. N. V., & Moores, A. (2019). Synthesis of high molecular weight chitosan from chitin by mechanochemistry and aging. Green Chemistry, 21(12), 3276–3285. https://doi.org/10.1039/c9gc00304e
Nikolić, D., Jovanović, S. V., Skerlić, J., Šušteršič, V., & Radulović, J. (2019). Methodology of life cycle sustainability assessment. Proceedings on Engineering Sciences, 1(2), 793–800. https://doi.org/10.24874/pes01.02.084
Nouri, M., Khodaiyan, F., Razavi, S. H., & Mousavi, M. A. (2016). The effect of different chemical and physical processing on the physicochemical and functional characterization of chitosan extracted from shrimp waste species of indian white shrimp. Progress in Rubber Plastics and Recycling Technology, 32(1), 39–54. https://doi.org/10.1177/147776061603200103
Onwucha, C. N., Talabi, J. O., Ajayi, S. O., Ehi‐Eromosele, C. O., & Ajanaku, K. O. (2023). Valorization of biomass using deep eutectic solvent: A short review. IOP Conference Series Earth and Environmental Science, 1197(1), 012002. https://doi.org/10.1088/1755-1315/1197/1/012002
Ooi, H. M., Munawer, M. H., & Kiew, P. L. (2021). Extraction of chitosan from fish scale for food preservation and shelf-life enhancer. https://doi.org/10.21203/rs.3.rs-1078067/v1
Pachapur, V. L., Guemiza, K., Rouissi, T., Sarma, S. J., & Brar, S. K. (2015). Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. Journal of Chemical Technology & Biotechnology, 91(8), 2331–2339. https://doi.org/10.1002/jctb.4821
Paiva, A., Craveiro, R., Aroso, I. M., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural deep eutectic solvents – Solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2(5), 1063–1071. https://doi.org/10.1021/sc500096j
Pal, C. B. T., & Jadeja, G. C. (2019). Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Science and Technology International, 26(1), 78–92. https://doi.org/10.1177/1082013219870010
Palai, S., Roy, A., Ashraf, G. J., Nandi, G., Sahu, R., Paul, P., & Dua, T. K. (2025). Optimization of microwave-assisted extraction of polysaccharide from fenugreek (Trigonella Foenum-Graecum) seeds. Current Nutrition & Food Science, 21(1), 122–131. https://doi.org/10.2174/0115734013312926240430105914
Pandey, A., Bhawna, B., Dhingra, D., & Pandey, S. (2017). Hydrogen bond donor/acceptor cosolvent-modified choline chloride-based deep eutectic solvents. The Journal of Physical Chemistry B, 121(16), 4202–4212. https://doi.org/10.1021/acs.jpcb.7b01724
Percot, A., Viton, C., & Domard, A. (2002). Optimization of chitin extraction from shrimp shells. Biomacromolecules, 4(1), 12–18. https://doi.org/10.1021/bm025602k
Potivas, T., & Laokuldilok, T. (2014). Deacetylation of chitin and the properties of chitosan films with various deacetylation degrees. Chiang Mai University Journal of Natural Sciences, 13(1).
Pour, S. B., Sardroodi, J. J., Ebrahimzadeh, A. R., & Pazuki, G. (2023). Investigation the effect of water addition on intermolecular interactions of fatty acids-based deep eutectic solvents by molecular dynamics simulations. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33234-8
Prawang, P., Zhang, Y., Zhang, Y., & Wang, H. (2019). Ultrasonic assisted extraction of artemisinin from Artemisia annua L. using poly(ethylene glycol): Toward a Greener process. Industrial & Engineering Chemistry Research, 58(39), 18320–18328. https://doi.org/10.1021/acs.iecr.9b03305
Renault, F., Sancey, B., Badot, P.-M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes–an eco-friendly approach. European Polymer Journal, 45(5), 1337–1348.
Rissouli, L., Bouziane, I., Mdarhri, Y., Essebaiy, H., Saidi, H., Berradi, M., Eddaoukhi, A., El Yacoubi, A., Laglaoui, A., & Bouassab, A. (2024). Optimization of chitin extraction from shrimp shells using full factorial design methodology. Ecological Engineering & Environmental Technology, 25. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-3ac6cbdd-c6f7-422b-ac78-733c90dd3110
Roda, A., Matias, A. A., Paiva, A., & Duarte, A. R. C. (2019). Polymer science and engineering using deep eutectic solvents. Polymers, 11(5), 912. https://doi.org/10.3390/polym11050912
Rodrigues, L., Redovniković, I. R., Duarte, A. R. C., Matias, A. A., & Paiva, A. (2021). Low-phytotoxic deep eutectic systems as alternative extraction media for the recovery of chitin from brown crab shells. ACS Omega, 6(43), 28729–28741. https://doi.org/10.1021/acsomega.1c03402
Ryu, J.-A., Zhang, M., Wang, Y., Li, R. M., Kim, K. H., Ragauskas, A. J., Leem, G., Park, M. B., & Yoo, C. G. (2024). Impacts of hydrogen bond donor structures in phenolic aldehyde deep eutectic solvents on pretreatment efficiency. Energy & Fuels, 38(17), 16441–16450. https://doi.org/10.1021/acs.energyfuels.4c02301
Sánchez, L.-F., Cánepa, J., Kim, S., & Nakamatsu, J. (2021). A simple approach to produce tailor-made chitosans with specific degrees of acetylation and molecular weights. Polymers, 13(15), 2415.
Saravana, P. S., Ho, T. C., Chae, S.-J., Cho, Y., Park, J., Lee, H.-J., & Chun, B. (2018). Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydrate Polymers, 195, 622–630. https://doi.org/10.1016/j.carbpol.2018.05.018
Sarofa, U., Rosida, D., & Khafsa, N. (2025). The role of base types and concentration in the deacetylation process of manufacturing chitosan from green mussel shells (Perna Viridis). Food Research, 9(1), 211–216. https://doi.org/10.26656/fr.2017.9(1).405
Satlewal, A., Agrawal, R., Bhagia, S., Sangoro, J., & Ragauskas, A. J. (2018). Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnology Advances, 36(8), 2032–2050. https://doi.org/10.1016/j.biotechadv.2018.08.009
Segaran, R., Omar, R., Kusumastuti, Y., Harun, R., & Kamal, S. M. M. (2022). Combined microwave-assisted subcritical liquid extraction of chitosan from crab shell waste. Progress on Chemistry and Application of Chitin and Its Derivatives, 27, 204–216. https://doi.org/10.15259/pcacd.27.016
Serna-Vázquez, J., Ahmad, M. Z., Boczkaj, G., & Castro‐Muñoz, R. (2021). Latest insights on novel deep eutectic solvents (DES) for sustainable extraction of phenolic compounds from natural sources. Molecules, 26(16), 5037. https://doi.org/10.3390/molecules26165037
Siddiqui, M. S., Alam, Md. S., & Ali, M. (2025). Exploring the potential of PEG-based deep eutectic solvents as a sustainable alternative for extraction of biological macromolecules bovine serum hemoglobin. ACS Omega, 10(7), 6839–6856. https://doi.org/10.1021/acsomega.4c09125
Sinardi, S., Soewondo, P., Notodarmojo, S., & radiman, cynthia. (2018). The chemical characteristics of chitosan extracted from green mussels shell (Mytilus virdis linneaus) and its potential application as a natural coagulant.
Srivastava, S. (2020). Knoevenagel condensation and michael addition in bio‐renewable deep eutectic solvent: Facile synthesis of a library of bis‐enol derivatives. Chemistryselect, 5(2), 799–803. https://doi.org/10.1002/slct.201904806
Strižincová, P., Šurina, I., Jablonský, M., Majová, V., Ház, A., Hroboňová, K., & Špačková, A. (2024). Analyzing the effect of extraction parameters on phenolic composition and selected compounds in clove buds using choline chloride and lactic acid as extraction agents. Processes, 12(4), 653. https://doi.org/10.3390/pr12040653
Suneeta, K., Rath, P., & Sri, H. K. A. (2016). Chitosan from shrimp shell (Crangon Crangon) and fish scales (Labeorohita): Extraction and characterization. African Journal of Biotechnology, 15(24), 1258–1268. https://doi.org/10.5897/ajb2015.15138
Sunton, N., Anglong, C., Limpawattana, M., Huang, W.-C., Mao, X., & Klaypradit, W. (2024). Organic acid-based natural deep eutectic solvents: A comparative study for chitin extraction from crab shell by-products. Journal of Fisheries and Environment, 48(3), 3. https://doi.org/10.34044/j.jfe.2024.48.3.08
Suriyanarayanan, S., Olsson, G. D., Kathiravan, S., Ndizeye, N., & Nicholls, I. A. (2019). Non-ionic deep eutectic liquids: acetamide–urea derived room temperature solvents. International Journal of Molecular Sciences, 20(12), 2857. https://doi.org/10.3390/ijms20122857
Synowiecki, J. & Nadia Ali Abdul Quawi Al-Khateeb. (2003). Production, properties, and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition, 43(2), 145–171. https://doi.org/10.1080/10408690390826473
Szopa, D., Wróbel, P., & Witek-Krowiak, A. (2024). Enhancing polyphenol extraction efficiency: A systematic review on the optimization strategies with natural deep eutectic solvents. Journal of Molecular Liquids, 124902.
Tan, H., Lim, Z. Y. J., Muhamad, N. A., & Liew, F. F. (2022). Potential economic value of chitin and its derivatives as major biomaterials of seafood waste, with particular reference to southeast asia. Journal of Renewable Materials, 10(4), 909–938. https://doi.org/10.32604/jrm.2022.018183
Tang, B., Zhang, H., & Row, K. H. (2015). Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of Separation Science, 38(6), 1053–1064. https://doi.org/10.1002/jssc.201401347
Tang, X., Zuo, M., Li, Z., Liu, H., Xiong, C., Zeng, X., Sun, Y., Hu, L., Liu, S., Lei, T., & Lin, L. (2017). Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. Chemsuschem, 10(13), 2696–2706. https://doi.org/10.1002/cssc.201700457
Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., Zibek, S., Gagliardini, A., Panariello, L., Coltelli, M., Bonis, A. D., & Falabella, P. (2022). Characterization of chitin and chitosan derived from hermetia illucens, a further step in a circular economy process. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10423-5
Vahidi, S. H., Monhemi, H., Hojjatipour, M., Hojjatipour, M., Eftekhari, M., & Vafaeei, M. (2023). Supercritical CO2/deep eutectic solvent biphasic system as a new green and sustainable solvent system for different applications: Insights from molecular dynamics simulations. The Journal of Physical Chemistry B, 127(37), 8057–8065. https://doi.org/10.1021/acs.jpcb.3c04292
Velez, C., & Acevedo, O. (2022). Simulation of deep eutectic solvents: Progress to promises. Wiley Interdisciplinary Reviews Computational Molecular Science, 12(4). https://doi.org/10.1002/wcms.1598
Verardi, A., Sangiorgio, P., Moliterni, S., Errico, S., Spagnoletta, A., & Dimatteo, S. (2023). Advanced technologies for chitin recovery from crustacean waste. Clean Technologies and Recycling, 3(1), 4–43. https://doi.org/10.3934/ctr.2023002
Vicente, F. A., Bradić, B., Novak, U., & Likozar, B. (2020). Α‐chitin dissolution, n‐deacetylation and valorization in deep eutectic solvents. Biopolymers, 111(5). https://doi.org/10.1002/bip.23351
Vicente, F. A., Huš, M., Likozar, B., & Novak, U. (2021). Chitin deacetylation using deep eutectic solvents: Ab initio-supported process optimization. ACS Sustainable Chemistry & Engineering, 9(10), 3874–3886. https://doi.org/10.1021/acssuschemeng.0c08976
Vigier, K. D. O., Châtel, G., & Jérôme, F. (2015). Contribution of deep eutectic solvents for biomass processing: Opportunities, challenges, and limitations. Chemcatchem, 7(8), 1250–1260. https://doi.org/10.1002/cctc.201500134
Vinci, G., Maddaloni, L., Prencipe, S. A., Orlandini, E., & Sambucci, M. (2023). Simple and reliable eco‐extraction of bioactive compounds from dark chocolate by deep eutectic solvents. A Sustainable Study. International Journal of Food Science & Technology, 58(7), 4051–4065. https://doi.org/10.1111/ijfs.16315
Wang, Y. (2023). Investigation of the effects of ternary deep eutectic solvent composition on pretreatment of sorghum stover. AICHE Journal, 69(12). https://doi.org/10.1002/aic.18227
Wang, Y. (2024). Catalytic conversion of glucose to levulinic acid over temperature-responsive Al-doped silicotungstic acid catalyst. Energy & Fuels, 38(9), 7950–7958. https://doi.org/10.1021/acs.energyfuels.4c00547
Yi, K., Miao, S., Yang, B., Li, S., & Lu, Y. (2024). Harnessing the potential of chitosan and its derivatives for enhanced functionalities in food applications. Foods, 13(3), 439. https://doi.org/10.3390/foods13030439
Yusof, R. (2023). Optimisation of microwave-assisted extraction of artocarpus integer peel pectin with choline chloride based deep eutectic solvent. Scientific Research Journal, 97–111.
Zhang, H., & Neau, S. H. (2001). In vitro degradation of chitosan by a commercial enzyme preparation: Effect of molecular weight and degree of deacetylation. Biomaterials, 22(12), 1653–1658.
Zhao, L. (2019). Oligosaccharides of chitin and chitosan: Bio-manufacture and applications. Springer Nature.
Zhou, X., Kong, M., Cheng, X. J., Feng, C., Li, J., Li, J. J., & Chen, X. G. (2014). In vitro and in vivo evaluation of chitosan microspheres with different deacetylation degree as potential embolic agent. Carbohydrate Polymers, 113, 304–313.
Zulkarnain, Z., Mukti, W. A. H., & Kurniawan, K. (2024). Sustainable and environment-friendly management of shrimp processing waste through high-quality chitosan production. Leuser Journal of Environmental Studies, 2(2), 95–100. https://doi.org/10.60084/ljes.v2i2.229
Алексеев, Г. В., Egorova, O. A., Shanin, V. A., Gaisin, I., & Israphilov, I. H. (2022). Optimization of the solution of mass- and heat transfer models in capillary-porous media. IOP Conference Series Earth and Environmental Science, 1112(1), 012085. https://doi.org/10.1088/1755-1315/1112/1/012085
DOI: http://dx.doi.org/10.62870/jip.v14i1.32299
Refbacks
- There are currently no refbacks.
Jurnal integrasi Proses (JIP) has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.