Pengaruh Temperatur Sintesis Precipitated Calcium Carbonate (PCC) Dengan Modifier Terhadap Ukuran Dan Jenis Kristal

Sri Wardhani, Miralda Syakirah, Darjito Darjito, Danar Purwonugroho

Abstract


Batu kapur dapat ditingkatkan nilai dan kualitasnya melalui proses sintesis Precipitated Calcium Carbonate (PCC). PCC banyak digunakan dalam industri kertas karena memiliki keunggulan ukuran partikel yang lebih seragam serta derajat kecerahan dan kemurnian yang lebih tinggi. Review artikel ini bertujuan untuk mengetahui pengaruh temperatur sintesis PCC dengan modifier terhadap ukuran dan jenis kristal, mengetahui pengaruh penambahan modifier terhadap ukuran partikel PCC serta mengetahui kondisi sintesis yang menghasilkan PCC yang dapat diaplikasikan dalam industri kertas. Review artikel ini menggunakan metode kajian pustaka berdasarkan literatur jurnal ilmiah dengan menggunakan satu jurnal PCC tanpa modifier dan lima jurnal PCC dengan modifier yaitu Sodium Deoxycholate (SDC), asam oleat, dodecyltrimethylammonium bromide (DTAB), etilen glikol, dan ethylenediaminetetraacetic acid (EDTA). Metode sintesis yang digunakan dari jurnal yang diteliti adalah metode kaustik soda dan karbonasi. Penentuan jenis kristal PCC menggunakan data hasil X-Ray Diffraction (XRD) dan penentuan ukuran partikel menggunakan data hasil Scanning Electron Microscope (SEM) dan Particle Size Analyzer (PSA). Berdasarkan hasil review artikel terhadap jurnal penelitian yang digunakan, temperatur reaksi mempengaruhi ukuran dan jenis kristal PCC dengan modifier. Jenis kristal kalsit terbentuk pada temperatur rendah (≤30°C), vaterit umum terbentuk pada temperatur ≥40°C, dan aragonit terbentuk pada temperatur tinggi ≥60°C. Semakin tinggi temperatur, ukuran PCC yang dihasilkan cenderung meningkat. Penambahan modifier mempengaruhi ukuran kristal PCC dengan menghasilkan ukuran yang lebih kecil dibanding dengan PCC tanpa modifier. Ukuran partikel yang dihasilkan sebesar 0,6‒10 µm.


Keywords


PCC, modifier, temperatur, jenis kristal, ukuran partikel

Full Text:

PDF

References


Lailiyah, Q., Baqiya, M. A., & Hakim, J. A. R., Pengaruh Temperatur dan Laju Aliran Gas CO2 pada Sintesis Kalsium Karbonat Presipitat dengan Metode Bubbling, 2012, 1(1), 5.

Badan Geologi, Kementerian Energi dan Sumber Daya Mineral, Laporan Tahunan Badan Geologi 2011. Jakarta.

Majid, D. A., & Sukojo, B. M., Pemetaan Potensi Batuan Kapur Menggunakan Citra Satelit Landsat 8 di Kabupaten Tuban. Jurnal Teknik ITS, 2012, 6(2), A692-697. https://doi.org/10.12962/j23373539.v6i2.25051

Khaira, K., Pengaruh Temperatur Dan Waktu Kalsinasi Batu Kapur Terhadap Karakteristik Precipitated Calcium Carbonate (PCC), Jurnal Sainstek, 2011, III(I), 33–43.

Apriliani, N. F., Studi Literatur PCC (Precipitated Calcium Carbonate) Untuk Aplikasi Bidang Teknik, Jurnal Teknika, 2016, 8(1), 4.

Hubbe, M. A., & Gill, R. A., Fillers for Papermaking: A Review of their Properties, Usage Practices, and their Mechanistic Role. BioResources, 2016, 11(1), 2886–2963. https://doi.org/10.15376/biores.11.1.2886-2963

Li, S., Yu, L., Geng, F., Shi, L., Zheng, L., & Yuan, S. , Facile preparation of diversified patterns of calcium carbonate in the presence of DTAB. Journal of Crystal Growth,2010,312(10),1766–1773. https://doi.org/10.1016/j.jcrysgro.2010.02.019

Wu, W. S., Queiroz, M. E., & Mohallem, N. D. S., The effect of precipitated calcium carbonate nanoparticles in coatings. Journal of Coatings Technology and Research, 2015, 13(2), 277–286. https://doi.org/10.1007/s11998-015-9740-x

Tran, H. V., Tran, L. D., Vu, H. D., & Thai, H., Facile surface modification of nanoprecipitated calcium carbonate by adsorption of sodium stearate in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366(1–3),95–103. https://doi.org/10.1016/j.colsurfa.2010.05.029

Putkham, A. I., Ladhan, S., & Putkham, A., Factors Affecting the Particle Size of Bio-Calcium Carbonate Synthesized from Industrial Eggshell Waste. Materials Transactions, 2018, 59(8), 1220–1224. https://doi.org/10.2320/matertrans.MF201708

Jiang, J., Liu, J., Liu, C., Zhang, G., Gong, X., & Liu, J. (2011). Roles of oleic acid during micropore dispersing preparation of nano-calcium carbonate particles. Applied Surface Science, 257(16), 7047–7053. https://doi.org/10.1016/j.apsusc.2011.03.001

Malia, E. N., Aplikasi Precipitated Calcium Carbonate Dari Batu Kapur Sebagai Campuran Bahan Baku Dalam Pembuatan Kertas (Skripsi), Insititut Pertanian Bogor, Bogor, 2018

Wardhani, S., Prasetia, F., Khunur, M. M., Purwonugroho, D., & Prananto, Y. P., Effect of CO2 Flow Rate and Carbonation Temperature in the Synthesis of Crystalline Precipitated Calcium Carbonate (PCC) from Limestone. Indonesian Journal of Chemistry, 2018, 18(4), 573. https://doi.org/10.22146/ijc.26608

Azkiya, N. I., Prasetia, F., Putri, E. D., Rosiana, A., & Wardhani, S., Synthesis of precipitated Calcium Carbonate (PCC) From Lime Rock Nature Methods Caustic Soda (Studies Concentration HNO3). Jurnal Ilmu Dasar, 2016, 17(1), 31–34. https://doi.org/10.19184/jid.v17i1.2670

Wiwit, Pembentukan Preciptated Calcium carbonate (PCC) dengan penambahan HNO3 dalam proses slaking pada metode karbonasi. Seminar dan Rapat Tahunan Bidang Ilmu MIPA Universitas Lambung Mangkurat, Banjarmasin, 2016

Mantilaka, M., Wijesinghe, W., Pitawala, H., Rajapakse, R., & Karunaratne, D., Surfactant-assisted synthesis of pure calcium carbonate nanoparticles from Sri Lankan dolomite. Journal of the National Science Foundation of Sri Lanka, 2014, 42(3),247. https://doi.org/10.4038/jnsfsr.v42i3.7398

Abeywardena, M. R., Elkaduwe, R. K. W. H. M. K., Karunarathne, D. G. G. P., Pitawala, H. M. T. G. A., Rajapakse, R. M. G., Manipura, A., & Mantilaka, M. M. M. G. P. G., Surfactant assisted synthesis of precipitated calcium carbonate nanoparticles using dolomite: Effect of pH on morphology and particle size. Advanced Powder Technology, 2020, 31(1), 269–278. https://doi.org/10.1016/j.apt.2019.10.018

Shimpi, N., Mali, A., Hansora, D. P., & Mishra, S., Synthesis and Surface Modification of Calcium Carbonate Nanoparticles Using Ultrasound Cavitation Technique. Nanoscience and Nanoengineering, 2015, 6.

Barhoum, A., Rahier, H., Abou-Zaied, R. E., Rehan, M., Dufour, T., Hill, G., & Dufresne, A., Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating. ACS Applied Materials & Interfaces, 2014, 6(4), 2734–2744. https://doi.org/10.1021/am405278j

Baghaskara, R., Sintesis TiO2-N/Zeolit-Kitosan dengan Metode Granulasi dan Aplikasinya sebagai Fotokatalis untuk Degradasi Bakteri E.coli dalam Air (Skripsi). Universitas Brawijaya, Malang, 2019

Chong, K.-Y., Chia, C.-H., & Zakaria, S., Polymorphs calcium carbonate on temperature reaction (pp. 52–56). Presented at the THE 2014 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium, Selangor,Malaysia,2014 https://doi.org/10.1063/1.4895169

Chen, A., Ma, P., Fu, Z., Wu, Y., & Kong, W. , Crystallization and assembling behavior of calcium carbonate controlled by Ca-organic fibers. Journal of Crystal Growth, 2013, 377, 136–142. https://doi.org/10.1016/j.jcrysgro.2013.05.010

Gopi, S. P., & Subramanian, V. K., Polymorphism in CaCO3 — Effect of temperature under the influence of EDTA (di sodium salt). Desalination, 2012, 297, 38–47. https://doi.org/10.1016/j.desal.2012.04.015

Ercan, B., Oral, Ç. M., & Kapusuz, D., Enhanced vaterite and aragonite crystallization at controlled ethylene glycol concentrations. Sakarya University Journal of Science, 2019, 1–1. https://doi.org/10.16984/saufenbilder.433985

Konopacka-Łyskawa, D. (2019). Synthesis Methods and Favorable Conditions for Spherical Vaterite Precipitation: A Review. Crystals, 9(4), 223. https://doi.org/10.3390/cryst9040223

Dulski, M., Dudek, K., Podwórny, J., Sułowicz, S., Piotrowska-Seget, Z., Malarz, K., Nowak, A., Impact of temperature on the physicochemical, structural and biological features of copper-silica nanocomposites. Materials Science and Engineering: C,2020,107,110274. https://doi.org/10.1016/j.msec.2019.110274

Elgh, B., & Palmqvist, A. E. C., A facile low-temperature synthesis of TiO2 nanoparticles with excellent polymorph control. Journal of Sol-Gel Science and Technology, 2015, 76(2), 395–401. https://doi.org/10.1007/s10971-015-3788-z

Babou-Kammoe, R., Hamoudi, S., Larachi, F., & Belkacemi, K., Synthesis of CaCO 3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions. The Canadian Journal of Chemical Engineering, 2012, 90(1), 26–33. https://doi.org/10.1002/cjce.20673

Elhendawi, H., Felfel, R. M., Abd El-Hady, B. M., & Reicha, F. M., Effect of Synthesis Temperature on the Crystallization and Growth of In Situ Prepared Nanohydroxyapatite in Chitosan Matrix. ISRN Biomaterials, 2014, 1–8. https://doi.org/10.1155/2014/897468

Zainal, N. A., Shukor, S. R. A., Wab, H. A. Ab., & Razak, K. A., Study on the Effect of Synthesis Parameters of Silica Nanoparticles Entrapped with Rifampicin. The Italian Association of Chemical Engineering, 2013, 32,2245–2250. https://doi.org/10.3303/CET1332375




DOI: http://dx.doi.org/10.36055/jip.v10i1.9207

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.