Prototipe Alat Monitoring Oksidasi Oli pada Mesin Hidrolik

Kiki Prawiroredjo, Ikhsan Saputra, Henry Candra

Abstract


Changing hydraulic engine oil regularly over a period of time is considered irrelevant because the oil quality today is better than the oil quality in the past. The process of monitoring the quality of hydraulic engine oil with a real-time system provides an advantage to replace the engine hydraulic oil in the right time. Oxidation is the main factor affecting oil degradation the most. This research proposes a system that monitors the condition of hydraulic engine oil and monitors its oxidation level as a preliminary research to determine the oil replacement time. The system refers to T. Bley's research that detects oil degradation based on infrared emitters and thermopile. The system uses LabVIEW as a Graphical User Interface (GUI). Four types of oil samples are used, namely new oil, oil that has been used for 6 months, 9 months, and 1 year. The method of testing and demonstrating the tool is carried out by pumping oil through the sensor which will read the signal attenuation caused by oil oxidation. The results of the test show that the longer the oil is used, the higher the level of oxidation and it can be seen from the level voltages generated by the sensor’s output is getting high.

 

Keywords: Infrared, thermopile, oxidation

Penggantian oli mesin hidrolik secara rutin selama kurun waktu tertentu dianggap sudah tidak relevan lagi karena kualitas oli pada dewasa ini sudah lebih baik dibandingkan dengan kualitas oli pada waktu yang lalu. Proses monitoring kualitas oli mesin hidrolik dengan sistem waktu nyata akan mwadahikan keuntungan karena waktu penggantian oli akan tepat sasaran. Oksidasi merupakan faktor utama yang paling mempengaruhi degradasi oli. Pada penelitian ini diajukan sebuah sistem yang dapat memonitor kondisi oli mesin hidrolik dan memantau tingkat oksidasinya sebagai penelitian awal untuk menentukan waktu penggantian oli pada waktu yang tepat. Sistem mengacu pada penelitian T. Bley dalam mendeteksi degradasi oli berbasis pemancar inframerah dan thermopile. Sistem  menggunakan LabVIEW sebagai Graphical User Interface (GUI). Pada pengujian digunakan 4 jenis sampel oli yaitu oli baru, oli yang sudah digunakan selama 6 bulan, 9 bulan, dan 1 tahun. Metode pengujian dan peragaan alat dilakukan dengan memompa oli melewati sensor yang akan membaca peredaman sinyal yang disebabkan oleh oksidasi oli. Hasil dari pengujian menunjukkan bahwa semakin lama oli digunakan semakin tinggi tingkat oksidasinya terlihat dari level tinggi tegangan yang dihasilkan oleh keluaran sensor yang semakin tinggi.

 

Kata kunci: Inframerah, thermopile, oksidasi


Keywords


Inframerah, thermopile, oksidasi

Full Text:

PDF

References


R. M. Mortier, M. F. Fox, and S. T. Orszulik, Chemistry and technology of lubricants: Third edition. 2010.

V. V. Karanović, M. T. Jocanović, J. M. Wakiru, and M. D. Orošnjak, “Benefits of lubricant oil analysis for maintenance decision support: A case study,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 393, no. 1, doi: 10.1088/1757-899X/393/1/012013.

T. Bley, E. Pignanelli, and A. Schütze, “Multi-channel IR sensor system for determination of oil degradation,” J. Sensors Sens. Syst., vol. 3, no. 1, pp. 121–132, 2014, doi: 10.5194/jsss-3-121-2014.

E. S. Julian, K. Prawiroredjo, and G. Tjahjadi, “The Model of near infrared sensor output voltage as a function of glucose concentration in solution,” in QiR 2017 - 2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, 2017, vol. 2017-Decem, pp. 146–149, doi: 10.1109/QIR.2017.8168471.

M. S. Rauscher, A. J. Tremmel, M. Schardt, and A. W. Koch, “Non-dispersive infrared sensor for online condition monitoring of gearbox oil,” Sensors (Switzerland), vol. 17, no. 2, pp. 1–12, 2017, doi: 10.3390/s17020399.

T. Theophanides, “Introductory Chapter: Introduction to Infrared Spectroscopy,” Infrared Spectrosc. - Mater. Sci. Eng. Technol., p. 510, 2012.

H. Technologies, “Infrared Source Series 5x Operational Characteristics for the IR-5x Series.” [Online]. Available: http://hawkeyetechnologies.com/IR5x.pdf.

Heimann Sensor, “HEIMANN Sensor GmbH D-01109 Dresden D-65343 Eltville Managing Director Dr . J . Schieferdecker Reg . at District Court Dresden HRB20692 VAT-ID DE813444739 Internet : www.heimannsensor.com Mail : info@heimannsensor.com Datasheet HIS-E222-F1 F2 Gx R01 AUG 2.” [Online]. Available: https://www.boselec.com/wp-content/uploads/Linear/Heimann/HeimannLiterature/HIS-E222-F1-F2-Gx.pdf.

S. Kasap, “Thermoelectric Effects in Metals,” Dep. Electr. Eng. Univ. Saskatchewan, Canada, pp. 1–11, 2001.

B. Carter and L. P. Huelsman, Handbook Of Operational Amplifier Active RC Networks, no. October. 2001.

ADS1113, “Analog-to-Digital Converter with Internal Reference ADS1113,” October, 2009. .

C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, “National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement,” J. Lab. Autom., vol. 12, no. 1, pp. 17–24, 2007, doi: 10.1016/j.jala.2006.07.012.




DOI: http://dx.doi.org/10.36055/setrum.v10i1.11000

Refbacks

  • There are currently no refbacks.