Perancangan Permanent Magnet Synchronous Motor (PMSM) 3 kW untuk Aplikasi Penggerak Electrical Scooter
Abstract
Electrical Scooter atau biasa sering disebut E-Scooter merupakan salah satu alternatif program green campus yang ramah lingkungan dan memiliki emisi gas buang nol. Terdapat 2 topologi PMSM yang dapat diaplikasikan pada e-scooter, yaitu RFPM dan AFPM, RFPM dipilih karena menimbang sisi ekonomis yang lebih murah dibandingkan AFPM. Penelitian ini bertujuan untuk merancang, membandingkan performa dan memilih RFPMSM dengan topologi inner atau outer rotor yang cocok untuk aplikasi penggerak e-scooter dengan mempertimbangkan back EMF, torsi, torsi cogging, dan efisiensi yang diperoleh. Untuk mendapatkan parameter sebagai bahan pertimbangan tersebut digunakanlah software desain elektromagnetik dengna metode Finite Element Method (FEM). Hasil dari penelitian ini menunjukkan bahwa PMSM dengan outer rotor memiliki performa yang lebih tinggi dibandingkan dengan inner rotor dibeberapa parameter. Hal ini ditunjukkan oleh PMSM outer rotor dengan kombinasi 21 slot 10 pole yang menghasilkan torsi sebesar 34,74293 Nm dan torsi cogging yang kecil hanya sebesar 0,314555 Nm atau 0,851436% dari total torsi dengan back EMF sebesar 71,76553 V dengan efisiensi sebesar 94,42670487 %.
Full Text:
PDF (Indonesian)References
P. M. S. Khande, A. S. Patil, G. C. Andhale, and R. S. Shirsat, “Design and Development of Electric scooter,” no. May, 2020.
B. Asian Development, Electric Two-Wheelers in India and Viet Nam, no. 2 (30). 2009.
F. Libert and J. Soulard, “DESIGN STUDY OF A DIRECT-DRIVEN SURFACE MOUNTED PERMANENT DESIGN STUDY OF A DIRECT-DRIVEN SURFACE MOUNTED PERMANENT MAGNET MOTOR FOR LOW SPEED APPLICATION,” no. May, 2014.
K. Rechkemmer, O. Sawodny, K. Sabrina, K. Rechkemmer, and S. K. Rechkemmer, “ScienceDirect Modeling of a Permanent Magnet Modeling of a Permanent Magnet Modeling of a Permanent Magnet for Synchronous Motor of E-Scooter Modeling of a Permanent Magnet for Synchronous Motor of E-Scooter Synchronous Motor of E-Scooter for Simulation w,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4769–4774, doi: 10.1016/j.ifacol.2017.08.956.
N. Ravi, S. Ekram, and D. Mahajan, “Design and Development of a In-Wheel Brushless D.C. Motor Drive for an Electric Scooter,” pp. 8–11.
M. Kovacik, P. Rafajdus, and S. Kocan, “ScienceDirect ScienceDirect Comparison of Various PMSM Rotor Topologies for High-speed Comparison of Various PMSM Rotor Topologies for High-speed Drives in Automotive Applications Drives in Automotive Applications,” Transp. Res. Procedia, vol. 55, no. 2019, pp. 995–1002, 2021, doi: 10.1016/j.trpro.2021.07.070.
R. Ilka, Y. Alinejad-beromi, and H. Yaghobi, “Cogging Torque Reduction of Permanent Magnet Synchronous Motor using Multi-objective Optimization,” Math. Comput. Simul., 2018, doi: 10.1016/j.matcom.2018.05.018.
Z. Shi, X. Sun, Y. Cai, X. Tian, and L. Chen, “Design optimisation of an outer-rotor permanent magnet synchronous hub motor for a low-speed campus patrol EV,” pp. 2111–2118, 2020, doi: 10.1049/iet-epa.2020.0130.
S. Sharouni, P. Naderi, M. Hedayati, and P. Hajihosseini, “and aircraft applications,” no. July 2020, pp. 243–254, 2021, doi: 10.1049/elp2.12019.
S. Paitandi and M. Sengupta, “Design, fabrication and parameter evaluation of a surface mounted permanent magnet synchronous motor,” 2014 IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 2014, pp. 9–14, 2014, doi: 10.1109/PEDES.2014.7042047.
N. Senevirathna, “Design of a Permanent Magnet Synchronous Motor for an Electric Traction Application Hewa Gamage Nandun Senevirathna,” 2020.
A. J. Sorgdrager and A. J. Grobler, “Influence of magnet size and rotor topology on the air-gap flux density of a radial flux PMSM,” Proc. IEEE Int. Conf. Ind. Technol., pp. 337–343, 2013, doi: 10.1109/ICIT.2013.6505695.
A. Łebkowski, “Design, analysis of the location and materials of neodymium magnets on the torque and power of in-wheel external rotor PMSM for electric vehicles,” Energies, vol. 11, no. 9, 2018, doi: 10.3390/en11092293.
D. Martínez, “Design of a Permanent-Magnet Synchronous Machine with Non- Overlapping Concentrated Windings Design of a Permanent-Magnet Synchronous Machine with Non-Overlapping Concentrated Windings for the Shell Eco Marathon Urban Prototype,” pp. 66–114, 2012.
R. Fauziayanti, “PERANCANGAN BRUSHLESS DC (BLDC) MOTOR UNTUK APLIKASI SKUTER LISTRIK MENGGUNAKAN FINITE ELEMENT METHOD ( FEM ),” 2021.
P. Xu, K. Shi, Y. Sun, and H. Zhua, “Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets,” AIP Adv., vol. 7, no. 5, 2017, doi: 10.1063/1.4974497.
F. Meier and J. Soulard, “PMSMs with Non-Overlapping Concentrated Windings: Design Guidelines and Model References,” Ecol. Veh. Renew. Energies EVER 09, no. September, pp. 26–29, 2009, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:PMSMs+with+Non-Overlapping+Concentrated+Windings+:+Design+Guidelines+and+Model+References#0.
DOI: http://dx.doi.org/10.36055/setrum.v11i2.17978
Refbacks
- There are currently no refbacks.