Identifikasi Sinyal Wicara untuk Proses Klasifikasi Gender dengan Algorithma Decision Tree

Tri Budi Santoso

Abstract


One application of the voice recognition technology is as an automatic answering machine to help a receptionist. In this research, a gender identification system has been created by utilizing speech signals to help improve interaction between automatic answering machines and customers. The identification process is carried out by comparing the incoming voice features with the speech signal feature data set that has been stored as a code book. The feature extraction used in this study is the Mel-Frequency Cepstral Coefficients (MFCC) because this method is a feature extraction method that approaches the human hearing system. Furthermore, the results of this feature extraction will be used to classify male or female gender using the Decision Tree algorithm, so that the gender of the speaker can be determined. The accuracy of gender prediction results for feature extraction data for vocal a data reaches 100%, vocal i data reaches 96.88%, vocal u data reaches 81.25%, vocal e data reaches 90.63%, and vocal o data reaches 87.50%.


Keywords


Speech signal, Gender Recognition, MFCC, Decision Tree

Full Text:

PDF (Indonesian)

References


] Esther Ramdinmawii and V. K. Mittal, Gender Identification from Speech Signal by Examining the Speech Production Characteristics, 2016 International Conference on Signal Processing and Communication (ICSC), Noida, India, 26-28 Dec. 2016

] S. Archana, M. Malleswari, Gender Identification and Performance Analysis of Speech Sinyals, Proceedings of 2015 Global Conference on Communication Technologies (GCCT 2015).

] A. Pahwa, G. Aggarwal, Speech Feature Extraction for Gender Recognition, in I.J. Image, Graphics and Sinyal Processing, 2016, 9, 17-25.

] S.I. Levitan, T. Mishra, S. Bangalore, Automatic Identification of Gender from Speech, in Speech Prosody 2016, 31 May - 3 Jun 2016, Boston, USA.

] I.T. Handoko, Suyanto, Klasifikasi Gender dan Usia berdasarkan Suara Pembicara Menggunakan Hidden Markov Model, Ind. Journal on Computing Vol. 4, Issue. 3, Dec 2019.

] S.B. Bhaskoro, A. Riedho, Aplikasi Pengenalan Gender Menggunakan Suara, Seminar Nasional Aplikasi Teknologi Informasi 2012 (SNATI 2012), Yogyakarta, 15-16 Juni 2012.

] I. Setiawati, A.P. Wibowo, A. Hermawan, Implementasi Decision Tree Untuk Mendiagnosis Penyakit Liver, Dielektrika, Vol. 4, No. 2 : 120 - 126 , Agustus 2017.

] K. Khan; R. Ullah Khan; Ali Alkhalifah; N. Ahma, Urdu Text Classification using Decision Trees, 2015 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET)

] Bahzad Taha Jijo, and Adnan Mohsin Abdulazeez, Classification Based on Decision Tree Algorithm for Machine Learning, Journal of Applied Science and Technology Trend, Vol. 02, No. 01, pp. 20 – 28 (2021)

] Zhifei Zhang, Zijian Zhao, and Doo-Seoung Yeom, Decision Tree Algorithm-Based Model and Computer Simulation for Evaluating the Effectiveness of Physical Education in Universities, Hindawi Complexity, Volume 2020, Article ID 8868793, 11 pages

] D. Putra, A. Resmawan, Verifikasi Biometrika Suara Menggunakan Metode MFCC dan DTW, Lontar Komputer Vol. 2 No.1, Juni 2011.

] Heriyanto, S. Hartati, A.E. Putra, Ekstraksi Ciri Mel Frequency Cepstral Coefficient (MFCC) dan Rerata Coefficient Untuk Pengecekan Bacaan Al-Qur’an, Telematika, Vol. 15, No. 02, Oktober, 2018, pp. 99 – 108.

] Fitrilina, M Idil Fitra, Dwi Harinitha, Multiband Spectral Subtraction dengan Menggunakan Gaussian Window untuk Meningkatkan Kualitas Sinyal Ucapan Berderau, Jurnal Ilmiah SETRUM, Volume 1, No, 1, Juni 2019, pp 112-123.




DOI: http://dx.doi.org/10.36055/setrum.v12i1.19108

Refbacks

  • There are currently no refbacks.