Perubahan Daya Beban di Setiap Bus Disimulasikan dengan Aplikasi MATLAB untuk Analogi Fenomena Steady State Stability

Arief Goeritno, Tapip Hendrawan

Abstract


Perubahan daya beban di setiap bus merupakan salah satu bentuk keberadaan fenomena steady state stability dimaknai sebagai kemampuan sistem untuk bertahan dalam kondisi sinkronisasi antar mesin dalam sistem, setelah terjadi gangguan kecil. Keberadaan fenomena tersebut dapat dilakukan melalui simulasi berbasis aplikasi komputer, seperti MATLAB. Aplikasi berbasis MATLAB untuk keperluan simulasi berupa struktur sintaks program untuk peng-input-an data nilai-nilai asumsi, aliran daya, dan steady state stability. Struktur sintaks program peng-input-an data nilai-nilai asumsi berisi data bus, generator, dan impedans saluran antar bus. Struktur sintaks program untuk simulasi fenomena aliran daya digunakan untuk penentuan daya mekanis setiap mesin pembangkitan daya, akibat perubahan beban.  Struktur sintaks program untuk fenomena steady state stability berisi nilai daya mekanis dari hasil penghitungan program aliran daya, data tiap-tiap mesin, dan persamaan-persamaan untuk pencarian sejumlah parameter. Mesin pembangkit dengan pembangkitan daya terbesar butuh waktu lebih lama untuk pencapaian kondisi kestabilan kembali setelah terdapat perubahan beban.

Keywords


perubahan beban di setiap bus, simulasi di sistem daya listrik, aplikasi berbasis MATLAB, fenomena steady state stability

Full Text:

PDF

References


B. Ravindranath, & M. Chander, 1977. Power System Protection and Switchgear, New Delhi: Wiley Eastern Limited, pp. 1-14.

U.A. Bakshi, & M.V. Bakshi, 2009. Protection and Switchgear. Pune: Technical Publication, pp. 1-34.

B. Ram, & D.N. Vishwakarma, 2011. Power System Protection and Switchgear, Second Edshiition. New Delhi: Tata McGraw-Hill Education Private Limited, pp. 1-31.

A. Goeritno, & Saidah. “Simulation of Single-phase to Ground Fault to Anticipate Against the Sympathetic Tripping Phenomena,” in Proceeding of the 1st ICETIA, UMS, Surakarta, 2014, pp. 229-233. [Online]. Available: https://publikasiilmiah.ums.ac.id/xmlui/bitstream/handle/11617/4994/37-Arief%20Goeritno.pdf?sequence=1

D. Das, 2006. Electrical Power Systems. New Delhi: New Age International Limited, pp. 276-306.

P.S.R. Murthy, 2007. Power System Analysis. Heyderabad: BS Publication, pp. 259-289.

P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. van Cutsem, and V. Vittal. “Definition and Classification of Power System Stability,” in IEEE Transactions on Power Systems, 19(2), May 2004, pp. 1387-1401.

H. Saadat, 1999. Power System Analysis. New York, NY: McGraw-Hill, Inc., pp. 460-526.

P.M. Anderson, & A.A. Fouad, 2003. Power System Control and Stability. Hoboken: Wiley-IEEE Press, pp. 3-12.

S.L. Uppal, 1984. Electrical Power: Generation, Transmission, Distribution, Witchgear and Protection, Utilization of Electrical Energy and Electric Traction,. Delhi: Khanna Publisher, pp. 654-699.

P. Kundur, 1994. Power System Stability and Control. New York, NY: McGraw-Hill, Inc., pp. 3-16.

J. Kiusalaas, 2005. “Introduction to MATLAB,” in Numerical Methods in Engineering with MATLAB. New York, NY: Cambridge University Press, pp. 1-27.

H. Moore, 2012. “About MATLAB,” in MATLAB for Engineers, Third Edition. Upper Saddle River, NJ: Pearson Education, Inc., pp. 1-8.

D. McMahon, 2007. “The MATLAB Enviroment,” in MATLAB Demystified. New York, NY: McGraw-Hill Companies, pp. 1-14.

M.P. Bahrman, & B.K. Johnson. “Transmission Lines: Steady State Operation,” in Power System Analysis and Design, 5th ed. J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye (editors). Stamford, CT: Cengage Learning, 2012, pp. 233-293..

IEEE Committee Report, “Proposed Terms and Definitions for Power System Stability,” in IEEE Transaction on Power Apparatus and System, 101(7), 1982, pp. 1894-1898.

S.C. Savulescu, “Fast Computation of the Steady-State Stability Limit,” in Real-Time Stability in Power Systems: Techniques for Early Detection of the Risk of Blackout, 2nd ed. S.C. Savulescu (Editor). Cham: Springer International Publishing, 2014, pp. 27-61.

A. Goeritno, & S. Rasiman. “Performance of Bulk Oil Circuit Breaker (BOCB) Influenced by Its Parameters (Case Study at the Substation of Bogor Baru),” in the 3rd International Conference on Engineering, Technology and Industrial Application (the 3rd ICETIA, 2016), 2017, pp. (020001) 1-12. [Online]. Available: http://aip.scitation.org/doi/pdf/10.1063/1.4985446.

K. Yong-Hak, K. Tae-Kyun, K. No-Hong, C. Jin-Boo, J. Joon-Young, & S. Seok-Ha. “Determination of Synchronous Machine and Excitation Systems Parameters From Field Tests,” in IFAC Power Plants and Power Systems Control, 2003, pp. 757-760.

J.J. Grainger, & W.D. Stevenson, 1994. Power System Analysis. New York, NY: McGraw-Hill, Inc., pp. 695-747.

W.K. Ang. Energy Function for Power Stability Assessment, Thesis, the University of Queensland, Brisbane, 2003.

A. Goeritno, & Z. Hardiyanto, (2008, April). Simulasi Fenomena Aliran Daya pada Sistem Tenaga Listrik “IEEE 5-Bus” Berbasis Metode Numeris dan Berbantuan Aplikasi MATLAB. Retrieved from: https://www.researchgate.net/publication/321427006_SIMULASI_FENOMENA_ALIRAN_DAYA_PADA_SISTEM_TENAGA_LISTRIK_IEEE_5-BUS_BERBASIS_METODE_NUMERIS_DAN_BERBANTUAN_APLIKASI_MATLAB.




DOI: http://dx.doi.org/10.36055/setrum.v8i1.5430

Refbacks

  • There are currently no refbacks.