SIMULASI KONTROLER PID TUNING MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA SEBAGAI PENGENDALI KECEPATAN MOTOR DC
Abstract
The majority of industrial control systems still use PID controller. Tuning of PID controller is important proses to applied PID controller. Optimization of PID controller(Kp. Ki and Kd) parameters is the key goal in industrial control systems. However, tuned the PID controller parameters by empirical method not optimum. This paper presents a fuzzy logic controller (self-tuning fuzzy PID) and genetic algorithm (GA based PID). Self- tuning fuzzy PID and GA based PID applied to simulation of a DC motor speed control. Several tests are carried out to investigate the performances of both controllers. Simulation results have demonstrated that the use of self-tuning fuzzy PID controller results in under Case D and Case E testing gives better performance with less overshoot. On the other hand, GA based PID controller has better performance under Case B and C testing.
Keywords: simulation, PID, fuzzy logic, genetic algorithm, speed of DC motor.
Sistem kendali PID masih banyak digunakan dalam industri sistem kendali. Tuning kontroler PID merupakan salah satu proses penting dalam implementasi kontroler PID.Tuning kontroler PID secara empirik seringkali mendapatkan hasil yang tidak optimal. Oleh karena itu, penelitian ini menyajikan kontroler PID yang dituning menggunakan logika fuzzy(self-tuning fuzzy PID) dan algoritma genetika (GA based PID ). Desain kontroler PID diimplementasikan dalam bentuk simulasi sebagai pengendali kecepatan motor DC. Beberapa pengujian pada simulasi dilakukan untuk melihat performa kinerja dari kedua system kontrol. Hasil simulasi menunjukkan bahwa self-tuning fuzzy PID menunjukan kinerja sistem yang baik dengan sedikitnya nilai overshoot saat pengujian sistem pada Case D dan E. Sedangkan GA based PID controller mampu bertahan di kisaran nilai set point saat diuji pada Case B dan Case C.
Kata kunci: simulasi, Kontroler PID, logika fuzzy, algoritma genetika, kecepatan, motor DC.
Keywords
Full Text:
PDF (Indonesian)References
R. Sharma, K.P.S. Rana, and V. Kumar,. (2014) ‘Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator’, Expert System with Applications, No.41.
Z. Bitara, S. Al Jabia and I. Khamis. (2011). ‘Modeling and Simulation of Series DC Motors in Electric Car’, The International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES14: Energy Procedia: No. 50, Pp. 460 – 470.
A. Faizy, and Kumar. (2011).‘DC Motor Control using Chopper’. Bachelor Thesis. National Institue of Technology Rourkela: India.
A.K. Sinha, and B. K. Sethy. (2013). ‘Speed Control of DC Motor Using Chopper’. Bachelor Thesis. National Institue of Technology Rourkela: India.
J.C. Basilio and S.R. Matos. (2002). ‘Design of PI and PID controllers with transient performance spesification’, IEEE Transaction on Education, Vol.45. No.4.
K.H. Ang, G.C.Y. Chong and Y. Li. (2005) ‘PID control system analysis, design, and technology’, IEEE Transactions on Control Systems Technology, Vol.13. No.4.
M.M.F. Algreer, and Y.R.M. Kuraz. (2008) ‘Design fuzzy self-tuning of PID controller for chopper-fed DC motor drive’, Al-Rafidain Engineering, vol.16, no.2.
R. Arulmozhiyal, R. Kandiban. (2012) ‘An intelligent speed controller for brushless dc motor’, 7th IEEE Conference on Industrial Electronics and Applications.
R.A. Hasanjani, S.Javadi, and R.S. Nadooshan. (2014) ‘DC motor speed control by self-tuning fuzzy PID algorithm’, Transaction of the Institute of Measurement and Control.
J. J. Keljik. (2013). ‘Electricity4: AC/DC Motor, Control and Maintenance (10th Edition)’, Delmar 5 Maxwell Drive, Clifton Park, NY 12065-2919, USA.
V. Chopra, S.K. Singla, and L. Dewan. (2014) ‘Comparative analysis of tuning a PID controller using intelligent methods’, Acta Polytechnica Hungarica, vol.11, no.8.
M. Chebre, A. Meroufel, and Y. Bendaha. (2011) ‘Speed Control of Induction Motor Using Genetic Algorithm-based PI Controller’, Acta Polytechnica Hungarica. Vol. 8, No. 6.
A. T. El-Deen, A. A. H. Mahmoud, and A. R. El-Sawi. (2015)‘Optimal PID Tuning for DC Motor Speed Controller Based on Genetic Algorithm’ International Review of Automatic Control (I.RE.A.CO.). Vol. 8, N. 1.
N. P. Adhikari, M. choubey, R. Singh. . (2012) ‘DC Motor Control Using Ziegler Nichols and Genetic Alogorithm Technicque’, proc.International Journal of Electrical, Electronics and computer Engineering, vol.no.1, pp33-36.
R. A. Krohling and J. P. Rey. (2001) ‘Design of optimal disturbance rejection PID controllers using genetic algorithms,’ IEEE Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 78–82.
A. Jaedun. (2011). ‘Metode Penelitian Eksperimen’, Pelatihan Penulisan Artikel Ilmiah, oleh LPMP Provinsi Daerah Istimewa Yogyakarta, Tanggal 20 – 23 Juni 2011.
G. Chen and T.T, Pham. (2000) ‘Introduction to Fuzzy sets, Fuzzy Logic, and Fuzzy Control Systems’, CRC Press: USA.
A.A. El-samahy, and M.A. Shamseldin. (2016) ‘Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control’, Ain Shams Engineering Journal,pp. 1 – 12.
M. Shamseldin. Speed Control of High performance Brushless DC Motor. Thesis. 2016. Helwan University:Egypt.
Gen dan cen
W. F. Mahmudy. (2015). ‘Dasar – dasar Algoritma Evolusi’, Modul Kuliah: Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya.
S. H. Kim (2017) ‘Electric Motor Control’, Elsevier Science; 1 edition (May 26, 2017). chapter 2.
A. Jayachitra, and R. Vinodha. (2014) ‘Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor’, Advances in Artificial Intelligenc.pp. Volume 2014, Article ID 791230, 8 pages.
D. Xue, Y. Chen and D. P. Atherton. (2007) ‘Linear Feedback control, Society of Industrial and Applied Mathematics, Chapter 3 and 6.
K. Ogata. (1996). ‘Teknik Kontrol Automatik’, PT Penerbit Erlangga, Jakarta, Indonesia.
DOI: http://dx.doi.org/10.36055/setrum.v8i2.6457
Refbacks
- There are currently no refbacks.