Analisis fluktuasi jumlah produksi gula tebu perbandingan bertahap triangular fuzzy inference system
Abstract
Sugar production owned by PT X (Persero) for the last 10 years still shows fluctuation. One of the factors is climate, including rainfall. Judging from the development, sugarcane is still vulnerable to the climate. Even so, there are still strategies to reduce the resulting risks, including by means of an appropriate cropping system. However, the safety stock of raw materials cannot be maintained because the quality of the sugarcane deteriorates very quickly. Therefore, sugarcane is continuously sourced in varying quantities and qualities from hundreds of geographically dispersed varieties and supplied to the milling process and due to changing weather conditions so that throughout the year, the time window must be considered for harvesting. Fuzzy logic is a science of uncertainty that has superior ability to process reasoning in language. In fuzzy logic theory, it is known that the concept of fuzzy systems is used in the prediction process and generally contains four stages: fuzzification, formation of fuzzy rules, fuzzy inference system reasoning, and defuzzification. Variable rainfall (mm/year), average yield (%/year), total sugarcane production (million tonnes/year) based on a triangular model of incremental uncertainty as an information attribute in the Fuzzy Inference System (FIS). The selection obtained by using the fuzzy inference system is approximately 5 points from the uncertainty factor that arises from the effect of the input on the total output of the resulting sugar cane production.
Full Text:
PDFReferences
P. Siwi and B. Handojo, “Impor Gula Mentah ( Raw Sugar) Versus Swasembada Gula,” Majalah Ilmiah Bahari Jogja (MIBJ), vol. 17, no. 2, pp. 98–109, 2019, doi: 10.33489/mibj.v17i2.214.
D. P. R. RI, “Kemandirian dan Otonomi Revitalisasi Industri Gula,” Buletin APBN, vol. 1, pp. 5-12, 2016.
B. K. Mk, M. Perencanaan, and P. Wilayah, “Model pengembangan kawasan agribisnis tebu,” no. September, pp. 1–26, 2011.
M. Grunow, H.-O. Günther, and R. Westinner, “Supply optimization for the production of raw sugar,” International Journal of Production Economics, vol. 110, no. 1, pp. 224–239, Oct. 2007, doi: 10.1016/j.ijpe.2007.02.019.
G. Eggleston and I. Lima, “Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries,” Sustainability, vol. 7, no. 9, pp. 12209–12235, 2015, doi: 10.3390/su70912209.
R. Kumar and V. Nath, “IT adaptation in sugar supply chain: a study at milling level,” International Journal of Logistics Systems and Management, vol. 35, no. 1, pp. 28–49, 2020, doi: 10.1504/IJLSM.2020.103862.
T. Jayabalan, M. Matheswaran, and S. Naina Mohammed, “Biohydrogen production from sugar industry effluents using nickel based electrode materials in microbial electrolysis cell,” International Journal of Hydrogen Energy, vol. 44, no. 32, pp. 17381–17388, 2019, doi: 10.1016/j.ijhydene.2018.09.219.
R. Meza-Palacios, A. A. Aguilar-Lasserre, L. F. Morales-Mendoza, J. R. Pérez-Gallardo, J. O. Rico-Contreras, and A. Avarado-Lassman, “Life cycle assessment of cane sugar production: The environmental contribution to human health, climate change, ecosystem quality and resources in México,” Journal of Environmental Science and Health, Part A, vol. 54, no. 7, pp. 668–678, 2019, doi: 10.1080/10934529.2019.1579537.
M. D. Lestari, “Analisa usahatani tebu (Studi Kasus di Kecamatan Ngantru Kabupaten Tulungagung),” Jurnal AGRIBIS, vol. 13, no. 15, pp. 48–54, 2017. Retrieved from https://journal.unita.ac.id/index.php/agribisnis/article/view/120
I. S. Magfiroh, “Managemen Risiko Rantai Pasok Tebu (Studi Kasus Di PTPN X),” JURNAL PANGAN, vol. 28, no. 3, pp. 203–212, 2019, doi: 10.33964/jp.v28i3.432.
T. D. Pratiwi, E. P. Wibowo, and H. Wibowo, “Daya Saing Usahatani Tebu terhadap Komoditas Eksisting di Wilayah Kerja Pabrik Gula Wonolangan Kabupaten Probolinggo Tahun 2018,” Caraka Tani: Journal of Sustainable Agriculture, vol. 33, no. 1, pp. 57–67, 2018, doi: 10.20961/carakatani.v33i1.19562.
N. R. Rochimah, S. Soemarno, and A. W. Muhaimin, “Pengaruh Perubahan Iklim Terhadap Produksi Dan Rendemen Tebu di Kabupaten Malang,” Indonesian Journal of Environment and Sustainable Development, vol. 6, no. 2, 2015.
A. S. Buana, A. H. Pratiwi, and A. Fradito, “Impact of Climate Change on Sugarcane Farmers Income and Key Factor of Adaptation Dan Faktor Penentu Adaptasi,” Gontor AGROTECH Science Journal, vol. 6, no. 2, pp. 97–114, 2020, doi: 10.21111/agrotech.v6i2.3537.
A. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, and K.-w. Chau, “Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production,” Science of The Total Environment, vol. 664, pp. 1005–1019, 2019, doi: 10.1016/j.scitotenv.2019.02.004.
T.-L. Nguyen, “Methods in Ranking Fuzzy Numbers: A Unified Index and Comparative Reviews,” Complexity, vol. 2017, p. e3083745, 2017, doi: 10.1155/2017/3083745.
M. Lathamaheswari, D. Nagarajan, J. Kavikumar, and S. Broumi, “Triangular interval type-2 fuzzy soft set and its application,” Complex & Intelligent Systems, vol. 6, no. 3, pp. 531–544, 2020, doi: 10.1007/s40747-020-00151-6.
A. K. Shyamal and M. Pal, “Triangular fuzzy matrices,” Iranian Journal of Fuzzy System, vol. 4, no. 1, pp. 75–87, 2007, doi: 10.22111/IJFS.2007.359.
E. D. Arifah, M. I. Irawan, and I. Mukhlash, "Application of Fuzzy Mamdani Method in the Determination of Total Production," Majalah Ilmiah Matematika dan Statistika, vol. 17, no. 2, pp. 79-90, 2017. doi: https://doi.org/10.19184/mims.v17i2.23759.
O. Castillo, L. Amador-Angulo, J. R. Castro, and M. Garcia-Valdez, “A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems,” Information Sciences: an International Journal, vol. 354, no. C, pp. 257–274, 2016, doi: 10.1016/j.ins.2016.03.026.
S. N. Sivanandam, S. Sumathi, and S. N. Deepa, Introduction to fuzzy logic using MATLAB. Berlin; New York: Springer, 2007.
S. Aminifar and A. Marzuki, “Uncertainty in Interval Type-2 Fuzzy Systems,” Mathematical Problems in Engineering, vol. 2013, p. e452780, 2013, doi: 10.1155/2013/452780.
R. John, “Type 2 fuzzy sets: an appraisal of theory and applications,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 6, pp. 563–576, 1998, doi: 10.1142/S0218488598000434.
DOI: http://dx.doi.org/10.36055/jiss.v7i1.10857
Refbacks
- There are currently no refbacks.
is supported by