Model sistem dinamis industri ayam pedaging dalam memenuhi kebutuhan daging ayam

Sirajuddin Sirajuddin, Galih Bhaswara, Akbar Gunawan

Abstract


Forecasting broiler meat production is very important to avoid a deficit or lack of broiler meat availability so that the nutrition of the people of Cilegon city can be fulfilled. The Cilegon Livestock Service has a record of fluctuating chicken production every year. Data were obtained from the distribution of broiler production in the city of Cilegon. However, this does not guarantee that the amount of chicken production in Cilegon City follows the demand. For this reason, it is necessary to conduct research using the dynamic system method. The purpose of this study was to identify the factors that affect the availability of chickens, create a broiler availability system through a dynamic system, and calculate the level of chicken availability in the city of Cilegon. The results of the dynamic system simulation show that the research shows that in 2022-2026 the demand for broilers is experiencing an increasing trend, but the production of broilers is in deficit. In the years 2022-2026, the demand for chicken meat is increasing and the availability is insufficient with a very significant difference. Therefore, through this research, the Cilegon City Government must increase the production of broilers in Cilegon City by increasing the number of breeders and opening up import opportunities from other cities so that the needs of broilers in Cilegon City can be fulfilled.


Keywords


simulasi; daging ayam; pangan; sistem dinamis

Full Text:

PDF

References


A. Risyaldi, M. Nusran, and D. Lantara, “Studi produk halal daging ayam potong dengan pendekatan rantai pasok (supply chain) di Makassar,” International Journal Mathla’ul Anwar of Halal Issues, vol. 1, no. 1, Art. no. 1, Mar. 2021, doi: 10.30653/ijma.202111.10.

A. H. Abdullah, “Pendekatan analisis sistem causal loop diagram (CLD) dalam memahami upaya pemerintah meningkatan akses masyarakat terhadap pendidikan tinggi yang berkualitas,” Jurnal Ilmiah Iqra’, vol. 5, no. 2, Feb. 2018, doi: 10.30984/jii.v5i2.573.

R. B. Mansilha, D. C. Collatto, D. P. Lacerda, M. I. Wolf Motta Morandi, and F. S. Piran, “Environmental externalities in broiler production: An analysis based on system dynamics,” Journal of Cleaner Production, vol. 209, pp. 190–199, Feb. 2019, doi: 10.1016/j.jclepro.2018.10.179.

K. D. Galarneau, R. S. Singer, and R. W. Wills, “A system dynamics model for disease management in poultry production,” Poultry Science, vol. 99, no. 11, pp. 5547–5559, Nov. 2020, doi: 10.1016/j.psj.2020.08.011.

S. Cuevas Garcia-Dorado et al., “Using Qualitative System Dynamics Analysis to Promote Inclusive Livestock Value Chains: A Case Study of the South African Broiler Value Chain,” Frontiers in Sustainable Food Systems, vol. 5, 2021, Accessed: Jun. 02, 2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fsufs.2021.670756

M. Nusran, M. Dahlan, N. Rauf, T. Nur, and K. Ahmad, “Policy of Halal Broilers Product Using Approach of System Dynamics,” IOP Conf. Ser.: Earth Environ. Sci., vol. 175, p. 012017, Jul. 2018, doi: 10.1088/1755-1315/175/1/012017.

I. Vanany, G. Hajar, N. M. C. Utami, and L. M. Jaelani, “Modelling food security for staple protein in Indonesia using system dynamics approach,” Cogent Engineering, vol. 8, no. 1, p. 2003945, Jan. 2021, doi: 10.1080/23311916.2021.2003945.

M. Aminudin, A. Mahbubi, and R. A. P. Sari, “Simulasi model sistem dinamis rantai pasok kentang dalam upaya ketahanan pangan nasional,” AGRIBUSINESS JOURNAL, vol. 8, no. 1, pp. 1–14, Jun. 2014, doi: 10.15408/aj.v8i1.5125.

L. R. Andhika, “Model sistem dinamis: Simulasi formulasi kebijakan publik [Dynamic system model: Simulation method in formulation public policy],” Jurnal Ekonomi & Kebijakan Publik, vol. 10, no. 1, pp. 73–86, Jul. 2019, doi: 10.22212/jekp.v10i1.1242.

A. Faradibah and E. Suryani, “Pengembangan model simulasi sistem dinamik untuk meningkatkan efisiensi sistem operasional transportasi,” ILKOM Jurnal Ilmiah, vol. 11, no. 1, pp. 67–76, May 2019, doi: 10.33096/ilkom.v11i1.413.67-76.

D. Mulyaningtyas, N. I. Arvitrid, A. Wirawan, and M. Syafrina, “Analisis sistem cold chain dengan strategi desentralisasi cold storage terhadap stabilitas harga komoditas ikan kembung di Lamongan Jawa Timur dengan pendekatan simulasi sistem dinamis,” Journal of Applied Business Administration, vol. 4, no. 2, pp. 148–155, Sep. 2020, doi: 10.30871/jaba.v4i2.2181.

I. K. Sriwana, N. Erni, and R. Abdullah, “Perancangan model persediaan bahan baku ubi ungu pada produksi keripik ubi ungu dengan metode simulasi sistem dinamis,” Jurnal Teknologi Industri Pertanian, vol. 30, no. 2, pp. 167–179, Aug. 2020, doi: 10.24961/j.tek.ind.pert.2020.30.2.167.

A. Ridwan, K. Kulsum, and E. Sinurat, “Integrasi lean six sigma, balanced scorecard, dan simulasi sistem dinamis dalam peningkatan kinerja supply chain,” Journal Industrial Servicess, vol. 4, no. 2, pp. 35–41, Mar. 2019, doi: 10.36055/jiss.v4i2.5150.

I. E. dan L. Nesti, “Penentuan lokasi agroindustri kopra di kabupaten mentawai dengan simulasi sistem dinamik,” Jurnal Teknologi Industri Pertanian, vol. 29, no. 2, pp. 147–153, Oct. 2019, doi: 10.24961/j.tek.ind.pert.2019.29.2.147.

M. D. D. Maharani, “Model dinamis pengelolaan usaha rumah potong hewan–Ruminansia,” Jurnal Industri Kreatif dan Kewirausahaan, vol. 1, no. 1, pp. 66–76, 2018, doi: 10.36441/kewirausahaan.v1i1.57.

P. Puryantoro and N. Istiqomah, “Analisis tingkat permintaan daging ayam ras (broiler) di masa pandemi covid-19 (Studi kasus di pasar Panarukan Kecamatan Panarukan Kabupaten Situbondo),” AGRIBIOS, vol. 19, no. 2, pp. 96–106, Nov. 2021, doi: 10.36841/agribios.v19i2.1283.

E. Habibah, F. Novianti, and H. Saputra, “Analisis terhadap faktor yang berpengaruh terhadap penerapan kebijakan pengelolaan sampah di Yogyakarta menggunakan pemodelan sistem dinamis,” Jurnal Analisa Sosiologi, vol. 9, pp. 124–136, Feb. 2020, doi: 10.20961/jas.v9i0.39809.

S. Sirajuddin, “Model pemanfaatan biodiesel terhadap ketersediaan bahan bakar minyak pada sektor transportasi umum di DKI Jakarta,” Teknika: Jurnal Sains dan Teknologi, vol. 7, no. 2, pp. 179–190, Nov. 2011.

C. E. Richards, R. C. Lupton, and J. M. Allwood, “Re-framing the threat of global warming: an empirical causal loop diagram of climate change, food insecurity and societal collapse,” Climatic Change, vol. 164, no. 3, p. 49, Feb. 2021, doi: 10.1007/s10584-021-02957-w.

O. Sahin et al., “Developing a Preliminary Causal Loop Diagram for Understanding the Wicked Complexity of the COVID-19 Pandemic,” Systems, vol. 8, no. 2, p. 126, Jun. 2020, doi: 10.3390/systems8020020.

L. Baugh Littlejohns, F. Baum, A. Lawless, and T. Freeman, “The value of a causal loop diagram in exploring the complex interplay of factors that influence health promotion in a multisectoral health system in Australia,” Health Res Policy Sys, vol. 16, no. 1, p. 126, Dec. 2018, doi: 10.1186/s12961-018-0394-x.

L. S. Liebovitch, P. T. Coleman, and J. Fisher, “Approaches to Understanding Sustainable Peace: Qualitative Causal Loop Diagrams and Quantitative Mathematical Models,” American Behavioral Scientist, vol. 64, no. 2, pp. 123–144, Feb. 2020, doi: 10.1177/0002764219859618.

C. Blair, E. Gralla, F. Wetmore, J. Goentzel, and M. Peters, “A Systems Framework for International Development: The Data-Layered Causal Loop Diagram,” Production and Operations Management, vol. 30, no. 12, pp. 4374–4395, 2021, doi: 10.1111/poms.13492.




DOI: http://dx.doi.org/10.36055/jiss.v8i1.14184

Refbacks

  • There are currently no refbacks.


  is supported by