Analisa survival untuk mengurangi customer churn pada perusahaan telekomunikasi

Faula Arina, Maria Ulfah

Abstract


Banyak perusahaan telekomunikasi di Indonesia membuat pelanggan yang telah berlangganan melakukan churn. Churn adalah pindahnya pelanggan dari satu provider ke provider lainnya. Perusahaan lebih memutuskan mempertahankan pelanggan, karena dibutuhkan biaya lebih sedikit daripada mencari pelanggan baru. Untuk mengurangi churn, maka penelitian ini akan memodelkan waktu survival. Metode yang digunakan adalah analisis survival dengan model regresi Cox. Hasil analisis survival diperoleh faktor faktor yang cenderung mempengaruhi pelanggan telekomunikasi bertahan di satu provider adalah status pernikahan, lama tinggal di alamat sekarang, dan pengalaman bekerja. Dari 1000 pelanggan telekomunikasi status menikah 49,5% sisanya tidak menikah. Pelanggan telekomunikasi status menikah memiliki resiko churn 0,6409 kali lebih kecil dari pada pelanggan komunikasi yang tidak menikah. Lama tinggal di alamat sekarang berpengaruh sebesar 0,9405 dan pengalaman kerja berpengaruh sebesar 0,9195 terhadap laju ketahanan hidup pelanggan telekomunikasi.

Keywords


Churn; Provider; Survival

Full Text:

PDF (IDN)

References


N. W. Wardani and N. K. Ariasih, “Analisa komparasi algoritma decision tree c4.5 dan naïve bayes untuk prediksi churn berdasarkan kelas pelanggan retail,” Int. J. Nat. Sci. Eng., vol. 3, no. 3, pp. 103–112, Dec. 2019, doi: 10.23887/IJNSE.V3I3.23113.

M. Arifin, “IG-KNN untuk prediksi customer churn telekomunikasi,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 6, no. 1, pp. 1–10, Apr. 2015, doi: 10.24176/SIMET.V6I1.230.

H. N. Irmanda, R. Astriratma, and S. Afrizal, “Perbandingan metode jaringan syaraf tiruan dan pohon keputusan untuk prediksi churn,” JSI J. Sist. Inf., vol. 11, no. 2, Oct. 2019, doi: 10.36706/JSI.V11I2.9286.

Y. Tri Utami, D. Asiah Shofiana, Y. Heningtyas, “Penerapan algoritma C4.5 untuk prediksi churn rate pengguna jasa telekomunikasi,” J. komputasi, vol. 8, no. 2, pp. 69–76, Oct. 2020, doi: 10.23960/KOMPUTASI.V8I2.2647.

S. Al_Janabi and F. Razaq, “Intelligent big data analysis to design smart predictor for customer churn in telecommunication industry,” SBD, vol. 53, pp. 246–272, 2019, doi: 10.1007/978-3-030-12048-1_26.

Y. Zhang, S. He, S. Li, and J. Chen, “Intra-operator customer churn in telecommunications: A systematic perspective,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 948–957, Jan. 2020, doi: 10.1109/TVT.2019.2953605.

I. Ullah, B. Raza, A. K. Malik, M. Imran, S. U. Islam, and S. W. Kim, “A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector,” IEEE Access, vol. 7, pp. 60134–60149, 2019, doi: 10.1109/ACCESS.2019.2914999.

H. Jain, A. Khunteta, and S. Srivastava, “Telecom churn prediction and used techniques, datasets and performance measures: a review,” Telecommun. Syst., vol. 76, no. 4, pp. 613–630, Apr. 2021, doi: 10.1007/S11235-020-00727-0/TABLES/4.

M. P. Bach, J. Pivar, and B. Jaković, “Churn Management in Telecommunications: Hybrid Approach Using Cluster Analysis and Decision Trees,” J. Risk Financ. Manag. 2021, Vol. 14, Page 544, vol. 14, no. 11, p. 544, Nov. 2021, doi: 10.3390/JRFM14110544.

A. Amin, F. Al-Obeidat, B. Shah, A. Adnan, J. Loo, and S. Anwar, “Customer churn prediction in telecommunication industry using data certainty,” J. Bus. Res., vol. 94, pp. 290–301, Jan. 2019, doi: 10.1016/J.JBUSRES.2018.03.003.

J. Pamina, J. Beschi Raja, S. Sam Peter, S. Soundarya, S. Sathya Bama, and M. S. Sruthi, “Inferring machine learning based parameter estimation for telecom churn prediction,” Adv. Intell. Syst. Comput., vol. 1108 AISC, pp. 257–267, 2020, doi: 10.1007/978-3-030-37218-7_30/FIGURES/8.

H. Jain, A. Khunteta, and S. Srivastava, “Churn Prediction in Telecommunication using Logistic Regression and Logit Boost,” Procedia Comput. Sci., vol. 167, pp. 101–112, Jan. 2020, doi: 10.1016/J.PROCS.2020.03.187.

D. G. Kleinbaum and M. Klein, Survival Analysis: A Self Learning Text, 3rd ed. New York: Springer, 2012.

E. Stripling, S. Vanden Broucke, K. Antonio, B. Baesens, and M. Snoeck, “Profit maximizing logistic regression modeling for customer churn prediction,” Proc. 2015 IEEE Int. Conf. Data Sci. Adv. Anal. DSAA 2015, Dec. 2015, doi: 10.1109/DSAA.2015.7344874.

S. Bharadwaj, B. S. Anil, A. Pahargarh, A. Pahargarh, P. S. Gowra, and S. Kumar, “Customer Churn Prediction in Mobile Networks using Logistic Regression and Multilayer Perceptron(MLP),” Proc. 2nd Int. Conf. Green Comput. Internet Things, ICGCIoT 2018, pp. 436–438, Aug. 2018, doi: 10.1109/ICGCIOT.2018.8752982.

P. K. Dalvi, S. K. Khandge, A. Deomore, A. Bankar, and V. A. Kanade, “Analysis of customer churn prediction in telecom industry using decision trees and logistic regression,” 2016 Symp. Colossal Data Anal. Networking, CDAN 2016, Sep. 2016, doi: 10.1109/CDAN.2016.7570883.

A. De Caigny, K. Coussement, and K. W. De Bock, “A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees,” Eur. J. Oper. Res., vol. 269, no. 2, pp. 760–772, Sep. 2018, doi: 10.1016/J.EJOR.2018.02.009.

R. Govindaraju, T. Simatupang, and T. A. Samadhi, “Perancangan Sistem Prediksi Churn Pelanggan,” Tek. Inform., vol. 9, no. 1, pp. 33–42, 2008.

W. Bi, M. Cai, M. Liu, and G. Li, “A Big Data Clustering Algorithm for Mitigating the Risk of Customer Churn,” IEEE Trans. Ind. Informatics, vol. 12, no. 3, pp. 1270–1281, Jun. 2016, doi: 10.1109/TII.2016.2547584.

E. Sivasankar and J. Vijaya, “Hybrid PPFCM-ANN model: an efficient system for customer churn prediction through probabilistic possibilistic fuzzy clustering and artificial neural network,” Neural Comput. Appl., vol. 31, no. 11, pp. 7181–7200, Nov. 2019, doi: 10.1007/S00521-018-3548-4/TABLES/14.

S. Hu, P. Chen, and X. Chen, “Do personalized economic incentives work in promoting shared mobility? Examining customer churn using a time-varying Cox model,” Transp. Res. Part C Emerg. Technol., vol. 128, p. 103224, Jul. 2021, doi: 10.1016/J.TRC.2021.103224.

H. H. Dukalang, “Analisis regresi Cox proportional hazard pada pemodelan waktu tunggu mendapatkan pekerjaan,” Jambura J. Math., vol. 1, no. 1, pp. 36–42, Jan. 2019, doi: 10.34312/JJOM.V1I1.1744.

T. Hanni and T. Wuryandari, “Model regresi Cox proporsional hazard pada data ketahanan hidup,” MEDIA Stat., vol. 6, no. 1, pp. 11–20, Jun. 2013, doi: 10.14710/MEDSTAT.6.1.11-20.

A. Amin et al., “Customer churn prediction in the telecommunication sector using a rough set approach,” Neurocomputing, vol. 237, pp. 242–254, May 2017, doi: 10.1016/J.NEUCOM.2016.12.009.

A. Amin, F. Al-Obeidat, B. Shah, A. Adnan, J. Loo, and S. Anwar, “Customer churn prediction in telecommunication industry using data certainty,” J. Bus. Res., vol. 94, pp. 290–301, Jan. 2019, doi: 10.1016/J.JBUSRES.2018.03.003.

D. Kong, J. G. Ibrahim, E. Lee, and H. Zhu, “FLCRM: Functional linear cox regression model,” Biometrics, vol. 74, no. 1, pp. 109–117, Mar. 2018, doi: 10.1111/BIOM.12748.




DOI: http://dx.doi.org/10.36055/jiss.v8i1.14313

Refbacks

  • There are currently no refbacks.


  is supported by