Perancangan rute pergerakan material handling crane pada operasional gudang barang jadi menggunakan ant colony optimization

Yusraini Muharni, Lely Herlina, Bobby Kurniawan, Muhammad Adha Ilhami, Kulsum Kulsum, Evi Febianti, Ade Irman Saeful Mutaqin, Hartono Hartono

Abstract


Gudang barang jadi merupakan area transit produk, tempat di mana produk yang telah selesai diproduksi menunggu penarikan dari pelanggan. Penarikan produk dari gudang yang tidak pasti  dapat berakibat pada produk ditarik pada waktu  yang bersamaan sehingga menimbulkan antrian dan waktu penanganan yang lebih lama. Di samping itu, rute pergerakan material handling menjadi tidak effisien, karena terlalu sering melalui rute bolak-balik yang seharusnya tidak perlu. Pada penelitian ini digunakan metode ant colony optimization  untuk  merancang rute pergerakan material handling yang efektif dan efisien untuk meminimasi biaya pemindahan material handling. Biaya pemindahan material handling terkecil dicapai pada seting parameter  = 1.0, = 1.0, dan  = 0.5.


Keywords


Gudang barang jadi; material handling; ant colony optimization

Full Text:

PDF

References


S. S. Heragu, Facilities design. Boca Raton: CRC Press, 2008.

R. S. Liggett, “Automated facilities layout: past, present and future,” Automation in Construction, vol. 9, no. 2, pp. 197–215, Mar. 2000, doi: 10.1016/S0926-5805(99)00005-9.

N. T. Putri and L. S. Dona, “Application of lean manufacturing concept for redesigning facilities layout in Indonesian home-food industry: A case study,” The TQM Journal, vol. 31, no. 5, pp. 815–830, Jan. 2019, doi: 10.1108/TQM-02-2019-0033.

A. R. S. Amaral, “A parallel ordering problem in facilities layout,” Computers & Operations Research, vol. 40, no. 12, pp. 2930–2939, Dec. 2013, doi: 10.1016/j.cor.2013.07.003.

H. Hosseini-Nasab, S. Fereidouni, S. M. T. Fatemi Ghomi, and M. B. Fakhrzad, “Classification of facility layout problems: a review study,” The International Journal of Advanced Manufacturing Technology, vol. 94, no. 1, pp. 957–977, Jan. 2018, doi: 10.1007/s00170-017-0895-8.

C.-Y. Cheng, Y.-Y. Chen, T.-L. Chen, and J. Jung-Woon Yoo, “Using a hybrid approach based on the particle swarm optimization and ant colony optimization to solve a joint order batching and picker routing problem,” International Journal of Production Economics, vol. 170, pp. 805–814, Dec. 2015, doi: 10.1016/j.ijpe.2015.03.021.

R. De Santis, R. Montanari, G. Vignali, and E. Bottani, “An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses,” European Journal of Operational Research, vol. 267, no. 1, pp. 120–137, May 2018, doi: 10.1016/j.ejor.2017.11.017.

E. Ardjmand, I. Ghalehkhondabi, W. A. Young II, A. Sadeghi, G. R. Weckman, and H. Shakeri, “A hybrid artificial neural network, genetic algorithm and column generation heuristic for minimizing makespan in manual order picking operations,” Expert Systems with Applications, vol. 159, p. 113566, Nov. 2020, doi: 10.1016/j.eswa.2020.113566.

A. Gupta and S. Srivastava, “Comparative Analysis of Ant Colony and Particle Swarm Optimization Algorithms for Distance Optimization,” Procedia Computer Science, vol. 173, pp. 245–253, Jan. 2020, doi: 10.1016/j.procs.2020.06.029.

E. Bottani, G. Casella, and T. Murino, “A hybrid metaheuristic routing algorithm for low-level picker-to-part systems,” Computers & Industrial Engineering, vol. 160, p. 107540, Oct. 2021, doi: 10.1016/j.cie.2021.107540.

M. Neroni, “Ant colony optimization with warm-up,” Algorithms, vol. 14, no. 10, p. 295, Oct. 2021, doi: 10.3390/a14100295.

A. Aboelfotoh, M. Singh, and G. Suer, “Order batching optimization for warehouses with cluster-picking,” Procedia Manufacturing, vol. 39, pp. 1464–1473, Jan. 2019, doi: 10.1016/j.promfg.2020.01.302.

F. Chen, H. Wang, C. Qi, and Y. Xie, “An ant colony optimization routing algorithm for two order pickers with congestion consideration,” Computers & Industrial Engineering, vol. 66, no. 1, pp. 77–85, Sep. 2013, doi: 10.1016/j.cie.2013.06.013.

A. R. McKendall and J. Shang, “Hybrid ant systems for the dynamic facility layout problem,” Computers & Operations Research, vol. 33, no. 3, pp. 790–803, Mar. 2006, doi: 10.1016/j.cor.2004.08.008.

D. Di Caprio, A. Ebrahimnejad, H. Alrezaamiri, and F. J. Santos-Arteaga, “A novel ant colony algorithm for solving shortest path problems with fuzzy arc weights,” Alexandria Engineering Journal, vol. 61, no. 5, pp. 3403–3415, May 2022, doi: 10.1016/j.aej.2021.08.058.

C.-T. Yen and M.-F. Cheng, “A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance,” Microsystem Technologies, vol. 24, no. 1, pp. 125–135, Jan. 2018, doi: 10.1007/s00542-016-3192-9.

A. Lissovoi and C. Witt, “Runtime analysis of ant colony optimization on dynamic shortest path problems,” Theoretical Computer Science, vol. 561, pp. 73–85, Jan. 2015, doi: 10.1016/j.tcs.2014.06.035.

F. Chen, H. Wang, Y. Xie, and C. Qi, “An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse,” Journal of Intelligent Manufacturing, vol. 27, no. 2, pp. 389–408, Apr. 2016, doi: 10.1007/s10845-014-0871-1.

V. Risqiyanti, H. Yasin, and R. Santoso, "Pencarian jalur terpendek menggunakan metode algoritma “ant colony optimization” pada GUI MATLAB (Studi kasus: PT Distriversa Buana Mas cabang Purwokerto)," Jurnal Gaussian, vol. 8, no. 2, pp. 272-284, May. 2019. doi: 10.14710/j.gauss.v8i2.26671.

J.-A. Sicilia, B. Royo, E. Larrodé, and A. Fraile, “A Decision Support System for a Long-distance Routing Problem based on the Ant Colony Optimization Metaheuristic,” Procedia - Social and Behavioral Sciences, vol. 111, pp. 1035–1044, Feb. 2014, doi: 10.1016/j.sbspro.2014.01.138.

Y.-C. Ho and J.-W. Lin, “Improving order-picking performance by converting a sequential zone-picking line into a zone-picking network,” Computers & Industrial Engineering, vol. 113, pp. 241–255, Nov. 2017, doi: 10.1016/j.cie.2017.09.014.

Y. Muharni, Kulsum, and M. Khoirunnisa, “Warehouse layout designing of slab using dedicated storage and particle swarm optimization,” IOP Conference Series: Materials Science and Engineering, vol. 532, no. 1, p. 12003, May 2019, doi: 10.1088/1757-899X/532/1/012003.

Y. Muharni, A. I. S. M, and Y. Noviansyah, “Perancangan tata letak gudang barang jadi menggunakan kebijakan class-based storage dan particle swarm optimization di PT XYZ,” JURNAL TEKNIK INDUSTRI, vol. 10, no. 3, pp. 200–209, Nov. 2020, doi: 10.25105/jti.v10i3.8405.

J. C.-H. Pan, P.-H. Shih, M.-H. Wu, and J.-H. Lin, “A storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system,” Computers & Industrial Engineering, vol. 81, pp. 1–13, Mar. 2015, doi: 10.1016/j.cie.2014.12.010.

A. H. Azadnia, S. Taheri, P. Ghadimi, M. Z. Mat Saman, and K. Y. Wong, “Order Batching in warehouses by minimizing total tardiness: A hybrid approach of weighted association rule mining and genetic algorithms,” The Scientific World Journal, vol. 2013, p. e246578, Jun. 2013, doi: 10.1155/2013/246578.

P.-Y. Yin and Y.-L. Chuang, “Adaptive memory artificial bee colony algorithm for green vehicle routing with cross-docking,” Applied Mathematical Modelling, vol. 40, no. 21, pp. 9302–9315, Nov. 2016, doi: 10.1016/j.apm.2016.06.013.

O. Polat, C. B. Kalayci, O. Kulak, and H.-O. Günther, “A perturbation based variable neighborhood search heuristic for solving the vehicle routing problem with simultaneous pickup and delivery with time limit,” European Journal of Operational Research, vol. 242, no. 2, pp. 369–382, Apr. 2015, doi: 10.1016/j.ejor.2014.10.010.

O. Polat, C. B. Kalayci, O. Kulak, and H.-O. Günther, “A perturbation based variable neighborhood search heuristic for solving the vehicle routing problem with simultaneous pickup and delivery with time limit,” European Journal of Operational Research, vol. 242, no. 2, pp. 369–382, Apr. 2015, doi: 10.1016/j.ejor.2014.10.010.

M. Dorigo and K. Socha, An Introduction to Ant Colony Optimization. 2 ed., new York: Chapman and Hall/CRC: 2018.

T. Liao, T. Stützle, M. A. Montes de Oca, and M. Dorigo, “A unified ant colony optimization algorithm for continuous optimization,” European Journal of Operational Research, vol. 234, no. 3, pp. 597–609, May 2014, doi: 10.1016/j.ejor.2013.10.024.




DOI: http://dx.doi.org/10.36055/jiss.v7i2.14468

Refbacks

  • There are currently no refbacks.


  is supported by