Types of Sex And Development of Gonad Protoginic Rice Grouper (Cromileptes altivelis) After Hormone Stimulation

Abdul Zahri, Melissa Justin Renjaan, Farida Farida

Abstract


This study aims to analyze the effect of estradiol (E2) and methyltestosterone (MT) combined with hCG on the composition of sex and the gonad development of protogynous humpback grouper (Cromileptes altivelis). The fish experiment 13±1,5g of body weight in the nursery phase. Treatment with a estradiol solution of 3 mg mL–1+ hCG 20 IU mL–1(CE), MT 3mg mL–1+ hCG 20 IU mL–1(CM), estradiol 3 mg mL–1 (E), MT 3 mg mL–1 (M) and 9 mg mL–1 NaCl to control (K). Hormone with dose 1 mL kg–1 was injected on dorsal fin base, with frequency of six times and periode of two weeks. The fish are kept in a 500 liters fiberglass container with a calm water system for 11 months. Fish were fed pellets with protein content of 46% twice daily. The study used a completely randomized design with one treatment factor, the hormone and its combination. Giving hormones with combination, i.e. treatmenth CE and CM was effective to increase the percentage of gonad development with GSI value 0.4161±0.0978% and 0.4161±0.1055%, whilw HSI on CE 0.6456±0.0419% and CM 0.5797±0.1069%  The gonadal histologic observation showed transition pattern and sex change from female to male at treatment M and CM. The MT hormone is able to stimulate masculinization and its performance is more effective when combined with hCG, 90% from sample population. The development of female gonads in the phases of oogonia and male of masculinization result in the phase of spermatogonia.


Keywords


hormone; sex determination; gonad development; humpback grouper

Full Text:

PDF

References


Avise, JC, Mank, J.E. 2009. Evolutionary perspectives on hermaphroditism in fishes. Sex Dev, 3(2), 152–163. URL: https://www.karger.com/Article/Abstract/223079

Cerda-Reverter JM, Canosa LF. 2009. Neuroendocrine system of the fish brain. In: Farrell AP, Brauner CJ (Eds.). Fish Physiology, 28: Fish Neuroendocrinology. Academic Press. London. 3–74 pp. URL: https://www.sciencedirect.com/science/article/pii/S1546509809280010

Costa DDM, Neto FF, Costa MDM, Morais RN, Garcia JRE, Esquivel BM, Ribeiro CAO. 2010. Vitellogenesis and other physiological responses induced by 17-β-estradiol in males of freswater fish Rhamdia quelen. Comparative Biochemistry and Physiology. Part C 151(2), 248–257. URL: https://www.sciencedirect.com/science/article/pii/S1532045609002245

Gaspare L, Bryceson I. 2013. Reproductive biology and fishery-related characteristics of the malabar grouper (Epinephelus malabaricus) caught in the coastal waters of Mafia Island, Tanzania. Journal of Marine Biology, vol. 2013, 1–12. URL: https://www.hindawi.com/journals/jmb/2013/786589/abs/

Erisman BE, Rosales-Casián, Hastings PA. 2007. Evidence of gonochorism in a grouper, Mycteroperca rosacea, from the Gulf of California, Mexico. Environ. Biol. Fish. Springer Science. 1–11 pp. URL: https://link.springer.com/article/10.1007/s10641-007-9246-1

Higuchi M, Celino FT, Miura C, Miura T. 2012. The synthesis and role of taurine in the eel spermatogenesis. Amino Acids, 43(2), 773–781. URL: https://www.terrapub.co.jp/onlineproceedings/ec/06/pdf/PR605.pdf

Kah O. 2009. Endocrine targets of the hypothalamus and pituitary. In: Farrell AP, Brauner CJ (Eds.). Fish Physiology, 28: Fish Neuroendocrinology. Academic Press. London. 75–112 pp. URL: https://www.sciencedirect.com/science/article/pii/S1546509809280022

Kearney M, Jeffs A, Lee P. 2011. Development and early differentiation of male gonads in farmed New Zealand shortfin eel, Anguilla australis. New Zealand Natural Sciences, 36(1), 33–44. URL: http://www.science.canterbury.ac.nz/nzns/issues/vol36-2011/kearney_a.pdf

Kiewek-Martínez, M, Garcia-López V, Rodríguez-Jaramillo C. 2010. Evidence of sexual transition in Leopard Grouper (Mycteroperca rosacea) individuals held in captivity. Hidrobioloógica, 20(3), 213–221. URL: https://www.redalyc.org/pdf/578/57819890003.pdf

Kraak GVD. 2009. The GnRH system and the neuroendocrine regulation of reproduction. In: Farrell AP, Brauner CJ (Eds.). Fish Physiology, 28: Fish Neuroendocrinology. Academic Press. London. 113–149 pp. URL: https://www.sciencedirect.com/science/article/ pii/S1546509809280034

Lee SLJ, Horsfield JA, Black MA, Rutherford K, Fisher F, Gemmell NJ. 2017. Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development. BMC Genomics, 18, 557–576. URL: https://bmcgenomics.biomedcentral.com/articles/ 10.1186/s12864-017-3915-z

Ӧzen MR, Balci BA. 2012. Histological study on reproductive pattern and sex reversal of dusky grouper Epinephelus guaza in natural environment of Atalaya Bay of Mediterranean in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 12, 157–164. URL: http://www.trjfas.org/abstract.php?lang=en&id=556

[SNI] Standar Nasional Indonesia. 2009. Induk ikan kerapu tikus (Cromileptes altivelis, Valenciennes ) – Bagian 1: Induk. SNI 01-6487.1-2011. URL: http://kkp.go.id/an-component/media/upload-gambar-pendukung/DIT%20PERBENIHAN/SNI%20Perbenihan /SNI%20Kerapu%20Bebek/22948_SNI%206487.1-2011%20induk%20ikan%20kerapu %20bebek_web.pdf

Sugama K, Rimmer MA, Ismi S, Koesharyani I, Suwirya K, Giri NA, Alava VR. 2012. Hatchery management of tiger grouper (Epinephelus fuscoguttatus): A best-practice manual. ACIAR Monograph No. 149. Australian Centre for International Agricultural Research: Canberra. 66 pp. URL: https://enaca.org/enclosure.php?id=475

Tsai YJ, Lee MF, Chen CY, Chang CF. 2011. Development of gonadal tissue and aromatase function in the protogynous orange-spotted grouper Epinephelus coioides. Zoological Studies, 50(6), 693–704. URL: http://zoolstud.sinica.edu.tw/Journals/50.6/693.pdf

Wang HP, Gao Z, Beres B, Ottobre J, Wallat G, Tiu L, Rapp D, O'Bryant P, Yao H. 2008. Effects of estradiol-17β on survival, growth performance, sex reversal and gonadal structure of bluegill sunfish Lepomis macrochirus. Aquaculture, 285(2), 216–223. URL: https://www.researchgate.net/publication/222404163

Wilson CA, Davies DC. 2007. The control of sexual differentiation of the reproductive system and brain. Review. Reproduction, 133(2), 331–359. URL: https://www.ncbi.nlm.nih.gov/pubmed/17307903

Yaron Z, Levavi-Sivan B. 2011. Endocrine regulation of fish reproduction. In: Farrell AP, (ed.), Encyclopedia of Fish Physiology: From Genome to Environment, volume 2, pp. 1500–1508. Academic Press, San Diego (US). URL: https://www.sciencedirect.com/ science/article/pii/B9780123745538000587?via%3Dihub

Zahri A, Sudrajat AO, & Zairin MJ. 2015. Pertumbuhan gonad sidat Anguilla bicolor bicolor yang diinduksi kombinasi hormon hCG, MT, E2 dan Antidopamin. Jurnal Akuakultur Indonesia, 14, 69–78. URL: https://pdfs.semanticscholar.org/0699/ 22fc62845b4bf3efe986226340b8f74d60db.pdf

Zahri A, Sudrajat AO, & Zairin MJ. 2016. Feminisasi sidat Anguilla bicolor bicolor Mc Clelland, 1844 melalui penyuntikan hormon estradiol dan metiltestosteron yang dikombinasi dengan hCG dan antidopamin. Jurnal Iktiologi Indonesia, 16(2), 159–169. URL: http://iktiologi-indonesia.org/wp-content/uploads/2017/03/05-Abdul-Zahri.pdf

Zahri A, Sudrajat AO, & Zairin MJ. 2018. Profil hormon FSH, LH dan estradiol serta kadar glukosa darah sidat, Anguilla bicolor bicolor (Mc Clelland, 1844) yang dirangsang hormon HCG, MT, E2 dan anti dopamin. Jurnal Iktiologi Indonesia, 18, 57–67. URL: https://jurnal-iktiologi.org/index.php/jii/article/view/374




DOI: http://dx.doi.org/10.33512/jpk.v10i2.7123

Refbacks

  • There are currently no refbacks.


https://www.worldlakes.org/