The leaching of South Kalimantan ilmenite decomposed by NaOH using hydrochloric acid solution

Erlina Yustanti, Aisah Rosani, Latifa Hanum Lalasari

Abstract


Judul: Pelindian ilmenit Kalimantan Selatan terdekomposisi basa NaOH menggunakan larutan asam klorida

 

Title: The leaching of South Kalimantan ilmenite decomposed by NaOH using hydrochloric acid solution


Indonesia adalah negara dengan sumber daya mineral yang berlimpah. Kekayaan sumber daya mineral tersebut hingga saat ini belum dapat dimanfaatkan secara maksimal. Ilmenit adalah salah satu mineral sebagai bahan pembuatan prekursor TiOSO4 yang belum dimanfaatkan secara optimal. Bahan baku yang digunakan untuk pembuatan prekursor TiOSO4 berupa ilmenit dengan rumus kimia FeTiO3. Ekstraksi ilmenit dapat dilakukan melalui jalur sulfat dan klorida. Pada ekstrasi klorida ilmenit hasil dekomposisi basa akan melalui proses pelindian menggunakan HCl sebagai pelarut. Tujuan dari penelitian ini menganalisis aspek kinetika untuk mengetahui pengendali laju reaksi agar berlangsung efektif dan efisien. Analisis melalui variasi konsentrasi HCl 3M, 5M, 7M, 9M, dan 12M dilakukan untuk mengetahui parameter proses optimum. Variasi suhu pelindian yang diamati mulai dari 70°C hingga 120°C. Variasi waktu pelindian dianalisis mulai 30, 60, 90, 120, 150, hingga 180 menit. Hasil penelitian pelindian ilmenit Kalimantan Selatan terdekomposisi NaOH, efektif menghasilkan kadar TiO2 14.530 ppm pada penggunaan HCl 9M selama 90 menit. peningkatan temperatur leaching, peningkatan perolehan kadar Ti dan maksimum pada 120oC. Sebagai pengendali laju selama proses pelindian ilmenit adalah chemical reaction control, dengan energi aktivasi 20 kJ/mol.


Indonesia has an abundance of mineral resources. These natural resources' richness has not yet been fully exploited. Ilmenite is one of the minerals that has not been exploited efficiently as a precursor for TiOSO4. Ilmenite, having the chemical formula FeTiO3, is the raw material utilized to produce TiOSO4 precursors. The sulfate and chloride routes can be used to extract ilmenite. The base breakdown will proceed through a leaching procedure utilizing HCl as a solvent to extract ilmenite chloride. The goal of this research is to examine the kinetic elements in order to develop effective and efficient response rate management. The optimal process parameters were determined by analyzing changes in HCl concentrations of 3M, 5M, 7M, 9M, and 12M. The measured temperature fluctuations in leaching varied from 70°C to 120°C. The leaching time was varied from 30, 60, 90, 120, 150, and 180 minutes. The South Kalimantan ilmenite leaching investigation found that decomposing NaOH efficiently created 14,530 ppm TiO2 levels when 9M HCl was used for 90 minutes. A rise in leaching temperature, an increase in Ti content recovery, and a maximum temperature of 120oC Chemical reaction control, with an activation energy of 20 kJ/mol, serves as the rate controller throughout the ilmenite leaching process.


Keywords


HCl; Ilmenite; Preccursor TiOSO 4; Kinetics;

Full Text:

PDF (English)

References


Subagja, R. (2016). Ekstraksi titanium dari ilmenit Bangka melalui tahap dekomposisi dengan KOH dan pelarutan dengan asam sulfat. Semin. Nas. Sains dan Teknol. Fak. Tek. Univ. Muhammadiyah Jakarta, pp. 1–8.

Ebadi, H., & Pourghahramani, P. (2019). Effects of mechanical activation modes on microstructural changes and reactivity of ilmenite concentrate. Hydrometallurgy, vol. 188, pp. 38–46.

Wang, X., Liu, X., Ma, Y., Wang, M., Wang, Y., & Wang, X. (2018). A novel technology for the refinement of low-grade ilmenite concentrate. Hydrometallurgy, vol. 180, pp. 36–40.

Liu, J., Li, Y., Arumugam, S., Tudor, J., & Beeby, S. (2018). Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCS) for large area flexible applications. Mater. Today Proc., vol. 5, pp. 13846–13854.

Wan, J., Tao, L., Wang, B.; Zhang, J.; Wang, H., & Lund, P. D. (2019). A facile method to produce TiO2 nanorods for high-efficiency dye solar cells. J. Power Sources, vol. 438, pp. 227012.

Barnard, K. R., McDonald, R. G., Pownceby, M. I., Sparrow, G. J., & Zhang, W. (2019). Processing anatase ores for pigment production. Hydrometallurgy, vol. 185, pp. 226–237.

Haverkamp, R. G., Kruger, D., & Rajashekar, R. (2016). The digestion of New Zealand ilmenite by hydrochloric acid. Hydrometallurgy, vol. 163, pp. 198–203.

Al-Mamun, M. R., Kader, S., Islam, M. S., & Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng., vol. 7, pp. 103248.

Khan, H. (2017). Sol–gel synthesis of TiO2 from TiOSO4: characterization and UV photocatalytic activity for the degradation of 4-chlorophenol. React. Kinet. Mech. Catal., vol. 121, pp. 811–832.

Yoshida, T., Misu, Y., Yamamoto, M., Tanabe, T., Kumagai, J., Ogawa, S., & Yagi, S. (2020). Effects of the amount of Au nanoparticles on the visible light response of TiO2 photocatalysts. Catal. Today, vol. 352, pp. 34–38.

Syihab, Muhammad, Z. (2020). Sintesis nanopartikel TiO2 dari larutan TiOSO4 hasil ekstraksi ilmenit Kalimantan Selatan. Skripsi. Cilegon: Universitas Sultan Ageng Tirtayasa.

Setiabudi, N. (2019). Pengaruh penambahan surfaktan dan amplitudo pada sintesis nanopartikel TiO2 anatase dari mineral ilmenit melalui metode destruksi ultrasonik. Skripsi. Cilegon: Universitas Sultan Ageng Tirtayasa.

Andini. (2018). Pembuatan anatase TiO2 dari mineral ilmenit Kalimantan Selatan dengan metode dekomposisi basa dan sonokimia. Skripsi. Cilegon: Universitas Sultan Ageng Tirtayasa.

Lalasari, L. H., Firdiyono, F., Yuwono, A. H., Harjanto, S., & Suharno, B. (2012). Preparation, decomposition and characterizations of Bangka - Indonesia Ilmenite (FeTiO3) derived by hydrothermal method using concentrated NaOH solution. Adv. Mater. Res., vol. 535–537, pp. 750–756.

Gao, L., Rao, B., Dai, H., Xie, H., Wang, P., & Ma, F. (2019). Kinetics of sulphuric acid leaching of titanium from refractory anatase under atmospheric pressure. Physicochem. Probl. Miner. Process., vol. 55, pp. 467–478.

Gireesh, V. S., Vinod, V. P., Krishnan Nair, S., & Ninan, G. (2015). Catalytic leaching of ilmenite using hydrochloric acid: A kinetic approach. Int. J. Miner. Process., vol. 134, pp. 36–40.

Adikri, E.S. (2019). Pengaruh temperatur dan waktu leaching dalam pembuatan prekursor SnCl2 dengan metode acid leaching. Skripsi. Cilegon: Universitas Sultan Ageng Tirtayasa.

Habashi, F. (1997). Handbook of Extractive Metallurgy, vol. 3, pp. 1184-1757. Weinheim: Wiley-VCH.

Levenspiel, O. (1999). Chemical reaction engineering; 3rd edition. USA: John Wiley & Sons.

LU, C. Y., Zou, X. L., Lu, X. G., Xie, X. L., Zheng, K., Xiao, W., Cheng, H. W., & Guang, G. S. (2016). Reductive kinetics of Panzhihua ilmenite with hydrogen. Trans. Nonferrous Met. Soc. China, vol. 26, no. 12, pp. 3266–3273.

Zhu, X., Liu, X., & Zhao, Z. (2019). Leaching kinetics of scheelite with sodium phytate. Hydrometallurgy, vol. 186, pp. 83–90.




DOI: http://dx.doi.org/10.36055/tjst.v17i1.10789

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.