Analysis of the application of polluted groundwater treatment technology using shell-based activated carbon media filters

Dedy Khaerudin, Ardi Hidayat

Abstract


One source of clean water used by residents of Sendal Kopo Subvillage, Panenjoan Village, Carenang District, Serang Regency comes from dug wells (groundwater), has a problem with very cloudy, yellow, sour taste and smells due to contamination from residual waste and the rest of the rice field irrigation system. The clean water treatment unit for community-based sanitation (Sanimas) owned by residents is no longer functioning by the central government. One alternative in treating polluted groundwater is to design a water filter installation from PVC pipes using activated carbon media from coconut shells and additional media for filter foam, injuk, zeolite stone, activated carbon, and silica sand to produce good raw water quality. Simple water analysis by making a water filter. The results of the analysis showed that the water content of activated carbon as the main medium was made after adding the activating agent ZnCl2, CaCl, or KCl 25% for 12-18 hours, indicating that the results met the SNI 06-3730-1995 regarding the standard of quality requirements and testing of activated charcoal both for water content <15% and ash content <10%, namely 7.56% and 7.89% ash content. The tool was tested on water samples ranging from color, pH, and Fe content from Panenjoan Village. After being tested using a water filter, the color of the water showed very good results. Initially, it was cloudy yellowish after passing through the filter to become clear white, while the pH test showed the results of 6.9 were still within the threshold because according to the regulation of the minister of health, No 492/Menkes/ Per/IV/2010 the pH is 6.5-8.5 while the level of Fe produced is 0.65 mg/l while according to the regulation it is 0.3 mg/l.

 

Salah satu sumber mata air bersih yang digunakan warga Kp. Sendal Kopo, Desa Panenjoan, Kecamatan Carenang, Kabupaten Serang berasal dari sumur galian (air tanah), memiliki masalah dengan kondisi air sangat keruh, kuning, berasa asam dan berbau akibat berasal dari pencemaran beberapa limbah dan sisa sistem pengairan sawah. Unit pengolahan air bersih sanitasi berbasis masyarakat (Sanimas) yang dimiliki warga sekitar sudah tidak berfungsi dari pemerintah pusat. Salah satu alternatif dalam pengolahan air tanah yang tercemar dengan mendisain instalasi filter air dari pipa PVC menggunakan media carbon aktif dari tempurung kelapa dan media tambahan busa filter, injuk, batu zeloit, carbon aktif dan pasir silika agar menghasilkan kualitas air baku yang baik. Analisis air sederhana dengan membuat filter air. Hasil analisis menujukan kadar air carbon aktif sebagai media utama yang di buat setelah menambahkan agen aktivator ZnCl2, CaCl atau KCl 25% selama 12-18 jam menujukan hasil memenuhi syarat standar SNI 06-3730-1995 tentang standard syarat mutu dan pengujian arang aktif baik untuk kadar air < 15% dan kadar abu <10%. yaitu 7,56 % dan kadar abu 7,89%. Alat tersebut di uji terhadap sample air mulai dari warna, pH, dan kadar Fe dari Desa Panenjoan. Warna air setelah di uji dengan menggunakan filter air menujukan hasil yang sangat baik, semula berwaran keruh kekuningan setelah melewati filter menjadi putih bening, sedangkan pengujian pH menunjukan hasil 6,9 masih dalam ambang batas karena menurut peraturan menteri kesehatan, No. 492/Menkes/Per/IV/2010 pH sebesar 6,5-8,5 sedangkan kadar Fe yang dihasilkan 0,65 mg/l sedangkan menurut peraturan yaitu 0,3 mg/l.


Keywords


Activated carbon, water filter, workshop, injuk, zeolite stone, coconut shell.

Full Text:

PDF

References


Muhammad, M. (2015). Strategi Sanitasi Kabupaten Serang. Serang: Kelompok Kerja Air Minum dan Penyehatan Lingkungan (Pokja AMPL).

Rahmawanti, N., & Dony, N. (2012). Studi arang aktif tempurung kelapa dalam penjernihan air sumur perumahan baru daerah Sungai Andai. Al Ulum Sains dan Teknologi, vol. 1, no. 2, pp. 84-88.

Satayeva, A. R., et. al. (2018). Investigation of rice husk derived activated carbon for removal of nitrate contamination from water. Science of the Total Environment, vol. 630, pp. 1237–1245.

Bisowarno, B. H., Noviyanti, J., & Martina, A. (2017). Penerapan Teknologi Tepat Guna dalam Penyediaan Air Bersih di Sekolah dan Peningkatan Ekonomi Masyarakat di Desa Cukang genteng. Bandung: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) Universitas Katolik Parahyangan.

Bhatnagar., et. al. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, vol. 219 pp. 499– 511.

Chaudhari, S. N., & Bogawar, K. A. (2017). Modification in rapid sand filter with coconut shells as capping media. International Journal for Technological Research in Engineering, vol. 4, no. 12, pp. 2685-2688.

Paredes, L., Alfonsin, C., Allegue, T., Omil, F., & Carballa, M. (2018). Integrating granular activated carbon in the post-treatment of membrane and settler effluents to improve organic micropollutants removal. Chemical engineering journal, vol. 345, pp. 79-86.

Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L., & Liu, Q. (2020). Optimized preparation of activated carbon from coconut shell and municipal sludge. Materials Chemistry and Physics, vol. 241, no. 122327, pp. 1-31.

Sweetman, M. J., May, S., Mebberson, N., Pendleton, P., Vasilev, K., Plush, S. E., & Hayball, J. D. (2017). Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification. Journal of Carbon Research, vol. 3, no. 2, pp. 1-29.

Chapman, T. L., McDonald, P. J., & Moser, S. (2015). The domestic politics of strategic retrenchment, power shifts, and preventive war. International Studies Quarterly, vol. 59, no. 1, pp. 133-144.

Devatha, C. P., Thalla, A. K., & Katte, S. Y. (2016). Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of cleaner production, vol. 139, pp. 1425-1435.

Şahin, Ö., Saka, C., Ceyhan, A. A., & Baytar, O. (2015). Preparation of high surface area activated carbon from Elaeagnus angustifolia seeds by chemical activation with ZnCl2 in one-step treatment and its iodine adsorption. Separation Science and Technology, vol. 50, no. 6, pp. 886-891.

Varila, T., Bergna, D., Lahti, R., Romar, H., Hu, T., & Lassi, U. (2017). Activated carbon production from peat using ZnCl2: Characterization and applications. BioResources, vol. 12, no. 4, pp. 8078-8092.

Le-Minh, N., Sivret, E. C., Shammay, A., & Stuetz, R. M. (2018). Factors affecting the adsorption of gaseous environmental odors by activated carbon: A critical review. Critical Reviews in Environmental Science and Technology, vol. 48, no. 4, pp. 341-375.

Huang, X., Shi, B., Hao, H., Su, Y., Wu, B., Jia, Z., ... & Yu, J. (2020). Identifying the function of activated carbon surface chemical properties in the removability of two common odor compounds. Water research, vol. 178, no. 115797, pp. 1-8.

Gbadamosi, A. O., Junin, R., Abdalla, Y., Agi, A., & Oseh, J. O. (2019). Experimental investigation of the effects of silica nanoparticle on hole cleaning efficiency of water-based drilling mud. Journal of Petroleum Science and Engineering, vol. 172, pp. 1226-1234.

Nursyamsi, N., & Maulana, I. (2020, May). Effect the silica sand percentage as subtitution of fine agregate on the concrete compressive strength. IOP Conference Series: Materials Science and Engineering, vol. 801, no. 1, pp. 012006-1-8.

Shi, K., Ren, M., & Zhitomirsky, I. (2014). Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. ACS Sustainable Chemistry & Engineering, vol. 2, no. 5, pp. 1289-1298.

Reza, M. S., Yun, C. S., Afroze, S., Radenahmad, N., Bakar, M. S. A., Saidur, R., Taweekun, J. & Azad, A. K. (2020). Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab Journal of Basic and Applied Sciences, vol. 27, no. 1, pp. 208-238.

Anggraeni, I. S., & Yuliana, L. E. (2015). Pembuatan karbon aktif dari limbah tempurung siwalan (Borassus flabellifer L.) dengan menggunakan aktivator seng klorida (ZnCl2) dan natrium karbonat (Na2CO3). [Dissertation]. Surabaya: Institut Teknologi Sepuluh Nopember.

Susmanto, P., Yandriani, Y., Dila, A. P., & Pratiwi, D. R. (2020). Pengolahan zat warna direk limbah cair industri jumputan menggunakan karbon aktif limbah tempurung kelapa pada kolom adsorpsi. JRST (Jurnal Riset Sains dan Teknologi), vol. 4, no. 2, pp. 77-87.

Liyanage, C. D., & Pieris, M. (2015). A physico-chemical analysis of coconut shell powder. Procedia Chemistry, vol. 16, pp. 222-228.

Naryanto, H. S., Prihartanto, P., & Ganesha, D. (2019). Kajian Kualitas Air Tanah dan Sungai pada Kawasan Rawan Banjir di Kabupaten Serang Kaitannya dengan Penyediaan Air Bersih. Jurnal Teknologi Lingkungan, vol. 20, no. 1, pp. 45-56.

Kementerian Kesehatan Republik Indonesia. (2017). Peraturan Kementerian Kesehatan No. 32 Tahun 2017 tentang Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan Kesehatan Air untuk Keperluan Higiensi Sanitasi, Kolam Renang, Solus Per Aqua, dan Pemandian Umum. Jakarta: Kementerian Kesehatan Republik Indonesia.




DOI: http://dx.doi.org/10.36055/tjst.v17i2.11773

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.