Article review: Comparison of octane booster additive for gasoline

Gustiana Awaludin Sobarsah, Nuryoto Nuryoto, Jayanudin Jayanudin

Abstract


Gasoline is a petroleum-derived liquid that is most typically used in internal combustion engines, especially those utilizing spark ignition. Gasoline is a hydrocarbon blend that contains sulfur, nitrogen, oxygen, and other metals. Olefins, aromatics, paraffin, and naphthenes are the four main components of gasoline. An octane number is a unit of measurement for the ignition quality or flammability of gasoline. It is frequently referred to as the research octane number (RON), and it is calculated using a ratio of isooctane to n-heptane. The octane number can be decreased by lengthening the hydrocarbon molecule chain and increasing by branching the carbon chain. Another method is to use an octane number increaser for gasoline as an addition. These are classified as oxygenate, ether, antiknock agent, nanoparticles, and aromatic compounds. Numerous studies have been conducted to establish the influence of additives in gasoline on engine performance metrics such as braking power, thermal brake efficiency, volumetric efficiency, fuel consumption efficiency, and their impact on the environment. This review article aims to assess and compare the effects of various gasoline additives on the performance and emission characteristics of ignition engines.

 

Bensin adalah cairan yang berasal dari minyak bumi yang paling banyak digunakan sebagai bahan bakar di mesin pembakaran internal, khususnya mesin menggunakan percikan pengapian. Bensin adalah campuran hidrokarbon dengan beberapa kontaminan, termasuk belerang, nitrogen, oksigen, dan logam tertentu. Empat kelompok penyusun utama bensin adalah olefin, aromatik, parafin, dan naften. Angka oktan adalah ukuran kualitas pengapian atau mudah terbakarnya bensin, biasa disebut Research Octane Number (RON) yang dapat diukur menggunakan perbandingan antara campuran isooktana dengan n-heptana. Angka oktan dapat berkurang dengan bertambahnya panjang rantai dalam molekul hidrokarbon sedangkan angka oktan dapat meningkat dengan membuat percabangan rantai karbonnya. Cara lain untuk meningkatkan angka oktan adalah ditambakan  peningkat angka oktan bensin sebagai aditif, yang terbagi pada kategori oxygenat, eter, agen antiknock, nano partikel dan senyawa aromatik. Banyak penelitian tentang penggunaan aditif dalam bensin untuk menentukan pengaruhnya terhadap ukuran kinerja mesin seperti daya pengereman, efisiensi rem termal, efisiensi volumetrik, efisiensi konsumsi bahan bakar, dan efeknya terhadap lingkungan. Tujuan dari artikel review ini adalah untuk mengevaluasi serta membandingkan berbagai aditif pada bensin dan pengaruhnya terhadap kinerja dan karakteristik emisi mesin pengapian.


Keywords


Octane booster, gasoline, additive

Full Text:

PDF

References


Jadhav, M., Jadhav, S., & Chavan, S. (2020). Application of additives with gasoline fuel: A Review. E3S Web Conference, vol. 170, no. 01026, pp/ 1-6.

Marchionna, M. (2018). Fossil energy : from conventional oil and gas to the shale revolution. EPJ Web Conferences, vol. 189, no. 00004, pp. 1-11.

Energy Information Administration (EIA). (2004). World energy and economic. International energy annual report. Washington: Energy Information Administration.

Energy Information Administration (EIA). (2003). World energy and economic. International energy annual report. Washington: Energy Information Administration.

Kontorovich, A. E, Eder, L.V., Filimonova, I.V., & Mishenin, M. V., Yu., V., Nemov. (2016). Oil industry of major historical centers of the vulga-ural petroleum province: Past, current state and long run prospect. Russian Geology and Geophysics, vol. 57, no. 12, pp. 1653-1667.

Kontorovich, A. E, Eder, L.V., Filimonova, I.V., & Sokolova, I.A. (2009). Strategy of development of an oil and gas complex Siberia. Oil Industry, no. 3, pp. 14-17.

Eder, L., Filimonova, I. V., Nemov, V., Komarova, A., & Sablin, K. (2019). Ecological aspects of economical development : issues forecast greenhouse gas emission in road transport in Europe and regions of Russia. E3S Web Conferences, vol. 80, no. 03010, pp. 1-7.

Demirbas, A., Balubaid, M. A., Basahel, A. M., Ahmad, W., Sheikh, M. H., (2015). Octane rating of gasoline and octane booster additives. Petroleum Science and Technology, vol. 33, no. 11, pp. 1190 -1197

Chigier, N.A. (1981). Energy, Combustion, and The Environment. New York: Mcgraw Hill.

Finlayson-Pitts, B. J., & Pitts Jr, J. N. (1986). Atmosphere Chemistry: Fundamentals and Experimental Techniques. New York: John Wiley & Sons.

Gaffney, J. S., & Marley, N. A. (2009). The impact of combustion emission on air quality and climate-from coal to biofuels and beyond. Atmos, Environ, vol. 43, no. 1, pp. 23-36.

Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Soil-borne particles and their impact on environment and human health. In Soil Component and Human Health, Spinger. Dordrecht: Springer.

Patil, A. R., & Taji, S. G. (2015). Effect of oxygenated fuel additive on diesel engine performance and emission : a review. IOSR Journal of Mechanical and Civil Engineering, pp. 30-35.

Hess, H. S., Szybist, J., Boehman, A. L. Tijm, P. J. A. & Waller, F. J. (2000). Impact of oxygenated fuel on diesel engine performance and emissions. Proceedings of the National Heat Transfer Conference. New York: American Society of Mechanical Engineers.

Mehta, B. H., Mandalia, H. V., & Mistry, A. B. (2011). A review on effect of oxygenated fuel additive on the performance and emission characteristics of diesel engine. National Conference on Recent Trends in Engineering & Technology, pp. 1.1-1.5.

Xiaolu, L., Hongyan, C., Zhiyong, Z., & Zhen, H. (2006). Study of combustion and emission characteristics of a diesel engine operated with dimethyl carbonate. Energy Conver Manag, vol. 47, no. 11-12, pp. 1438–1448.

Pacheco, M. A., & Marshall, C. L. (1997). Review of Dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels, vol. 11, no. 1, pp. 2–29.

Huang, S., Yan, B., Wang, S., & Ma, X. (2015). ChemInform abstract: Recent advances in dialkyl carbonates synthesis and applications. Chem. Soc. Rev., vol. 44, no. 10, pp. 3079-3116.

Pyo, S. H., Ji, H. P., Chang, T. S., & Hatti-Kaul, R. (2017). Dimethyl carbonate as a green chemical. Curr Opin. Green Sustain. Chem, vol. 5, pp. 61–66.

Schifter, I., Gonzalez, U., Diaz, L., Sanchez-Reyna, G., Mejia-Centeno, I., & Gonzalez-Macias, C. (2017). Comparison of performance and emissions for gasoline oxygenated blends up to 20 percent oxygen and implications for combustion on a spark ignited engine. Fuel, vol. 208, pp. 673–681.

Schifter, I., Gonzlez, U., & Gonzlez-Macas, C. (2016). Effects of ethanol, ethyl-tert-butyl ether and dimethyl-carbonate blends with gasoline on SI engine. Fuel, vol. 183, pp. 253–261.

Gopinath, D., & Sundaram, E. G. (2012). Experimental investigation on the effect of adding di methyl carbonate to gasoline in a SI engine performance. Int. J. Sci. Eng. Res, vol. 3, pp. 1–5.

Wen, L.b., Xin, C.Y., & Yang, S.C. (2010). The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission.. Appl. Energy, vol. 87, 115–121.

Abdalla, A. O. G., & Liu, D. (2018). Dimethyl carbonate as a promising oxygenated fuel for combustion: A review. Energies, vol. 11, no. 1552, pp. 1-20.

Donahue, C. J., D’Amico, T., & Exline, J. A. (2002). Synthesis and characterization of a gasoline oxygenate, ethyl tert-butyl ether. Journal of Chemical Education, vol. 79, pp. 724–726.

Environmental Protection Agency (EPA). (1998). MTBE fact sheets #1: Overview. Environmental Protection Agency. Washington: Environmental Protection Agency.

Environmental Protection Agency (EPA). (1996). Oxyfuels information needs. Environmental Protection Agency, Washington: Environmental Protection Agency.

Vlasenko, N. V., Kochkin, Y. N., Topka, A. V., & Strizhak, P. E. (2009). Liquid-phase synthesis of ethyl tert-butyl ether over acid cation-exchange inorganic-organic resins. Applied Catalysis A, General, vol. 362, no. 1-2, pp. 82–87.

Demirbas, M. F., & Balat, M. (2006). Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Conversion and Management, no. 47, no. 15-16, pp. 2371–2381.

Zereshki, S., Figoli, A., Madaeni, S. S., Galiano, F., & Drioli, E. (2011). Pervaporation separation of ethanol/ETBE mixture using poly (lactic acid)/poly(vinyl pyrrolidone) blend membranes. Journal of Membrane Science, vol. 373, no. 1-2, pp. 29–35.

Auffret, M., Labbe, D., Thouand, G., Greer, C. W., & Fayolle-Guichard, F. (2009). Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Applied and Environment Microbiology, vol. 75, no. 24, pp. 7774–7782.

Malandain, C., Fayolle-Guichard, F., & Vogel, T. M. (2010). Cytochromes P450-mediated degradation of fuel oxygenates by environmental isolates. FEMS Microbiology Ecology, vol. 72, no. 2, pp. 289–296.

Matsumoto, N., Sano, D., & Elder, M. (2009). Biofuel initiatives in Japan: strategies, policies, and future potential. Applied Energy, pp. 69–76

Fujii, S., Yabe, K., Furukawa, M., Matsuura, M., & Aoyama, H. A. (2010). One-generation reproductive toxicity study of ethyl tertiary butyl ether in rats. Reproductive Toxicology, vol. 30, pp. 414–421

Thiel, C., Sundmacher, K., & Hoffmann, U. (1997). Synthesis of ETBE: residue curve maps for the heterogeneously catalysed reactive distillation process. Chemical Engineering Journal, vol. 66, no. 3, pp. 181–191

Yang, B, L., Yang, S, B., & Yao, R, Q. (2000). Synthesis of ethyl tert-butyl ether from tert-butyl alcohol and ethanol on strong acid cation-exchange resins. Reactive and Functional Polymers, vol. 44, no. 2, pp. 167–75.

Assabumrungrat, S., Kiatkittipong, W., Sevitoon, N., Praserthdam, P., & Goto, S. (2002). Kinetics of liquid phase synthesis of ethyl tert-butyl ether from tert-butyl alcohol and ethanol catalyzed by b-zeolite supported on monolith. International Journal of Chemical Kinetics, vol. 34, pp. 292–299.

Umar, M., Patel, D., & Saha, B. Kinetic studies of liquid phase ethyl tert-butyl ether (ETBE) synthesis using macroporous and gelular ion exchange resin catalysts. Chemical Engineering Science, vol. 64, pp. 4424–4432.

Streicher, C., Asselineau, L., & Forestiere, A. (1995). Separation of alcohol/ether/hydro-carbon mixtures in industrial etherification processes for gasoline production. Pure and Applied Chemistry, vol. 67, no. 6, pp. 985–992.

Westphal, G. A., Krahl, J., Bruning, T., & Hallier, E. B., & ¨ unger, J. (2010). Ether oxygenate additives in gasoline reduce toxicity of exhausts. Toxicology, vol. 268, no. 3, pp. 198–203.

Domingues, L., Pinheiro, C. I. C., Oliveira, N. M. C., Fernandes, J., & Vilelas, A. (2012). Model development and validation of ethyl tert-butyl ether production reactors using industrial plant data. Industrial and Engineering Chemistry Research, vol. 51, no. 46, pp. 15018-15031.

Kaiser, E. W., Andino, J. M., Siegl, W. O., Hammerle, R. H., & Butler, J. W. (1991). Hydrocarbon and aldehyde emissions from an engine fueled with ethyl-t-butyl ether. Journal of the Air and Waste Management Association, vol. 41, no. 2, pp. 195–197.

Croezen, H., & Kampman, B. (2009). The impact of ethanol and ETBE blending on refinery operations and GHG-emissions. Energy Policy, vol. 37, no. 12, pp. 5226–5238.

Fei Yee, Kian., Rahman Mohamed, Abdul & Huat Tan, Soon. (2013). A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospect. Renewable and sustainable energy reviews, vol. 22, pp. 604-620.

Andrade, J. M., Muniategui, S., & Prada, D. (1997). Prediction of clean octane numbers of catalytic reformed naphthas using FT-mir and PLS. Fuel, vol. 76, no. 11, pp. 1035-1042.

Emel’yanov, V. E., Simonenko, L. S., & Skovortsov, V. N. (2001). Ferrocene – a non toxic antiknock agent for automotive gasoline. Chemistry and Technology of Fuels and Oils, vol. 37, no. 4, pp. 224-228.

Stratiev, D., & Kirilov, K. (2009). Opportunities for gasoline octane increase by use of iron containing octane booster. Petroleum Coal, vol. 51, pp. 244–248.

Patil, A. R., Yerrawar, R. N., Nigade, S. A., Chavan, O. B., Rathod, H. S., & Hiran, B. K. (2014). Literature review on need of composite additives for S.I Engine. Int. J. Res. Develop. Technol., vol. 2, pp. 8–12.

Lerner, M. O. (1979). Chemical combustion controllers for motor fuels. Khimiya, vol. 119, pp. 70-72.

Aronov, D. I., Golov, V. I., & Lerner, M. O. (1960). Khim. Tekhnol. Topl. Masel, no. 7, pp. 43-46.

Gursky, J., Vesely, V., & Patzelt, E. (1972). Ropa a Uhlie, vol. 14, no. 10, pp. 550-555.

Vesely, V.T., Toma, S., & Gursky, J. (1973). Ropa a Uhlie, vol. 15, no. 4, pp. 194-197.

Toma, S., Elecko, P., & Salisova, M. (1981). Univ. Comen Fornatio e. Prot. Natur, no. 7, pp. 187-198.

Perevalova, E. G., Reshetova, M. D., & Grinberg, K. N. (1983). Iron-organic compounds ferrocene. Methods of Heteroorganic Chemistry, pp. 437-439.

Dem'yanenko, E. A., Sachivko, A. V., Tverdokhlebov, V. P., Deineko, P. S., Bakaleinik, A. M., Manaenkov, V. M., Emel’yanov, V. E. & Onoichenko, S. N. (1993). Antiknock agent for unleaded gasolines. Chemistry and Technology of Fuels and Oils, vol. 29, no. 6, pp. 267-270.

K. P. Shug, H. J. Guttman, and A. W. Reuss. (1990). SAE Techn. Pat. Ser., No. 900154.

Dunphy, K, A., Guzman, M, R, Taylor, J., & Banfield, K. (2006). Environmental risks of nanotechnology: national nanotechnology initiative funding. Environ. Sci. Technol., vol. 40, no. 5, pp. 1401–1407.

Cervini-silva, J., Fowle, D., & Banfield, J. F. (2005). Biogenic dissolution of soil cerium-phosphaye minerals. Am. J. Sci. vol. 305, no. 6-8, pp. 711–726.

Moy, D., Niu, C., & Tennent, H. (2005). Fuels and Lubricants Containing Carbon Nanotubes. United States Patent 20050108926 A1.

Moy, D., & Niu, C. Carbon Nanotubes in Fuels. United States patent 6419717 B2.

Rashidi, A. M., Akbarnejad, M. M., Khodadadi, A. A., Mortazavi, Y., & Ahmadpour, A. (2007). Single-wall carbon nanotubes synthesized using organic additives to Co–Mo catalysts supported on nanoporous MgO. Nanotechnology, vol. 18, no. 31, pp. 1-5.

Speight, J. (2002). Handbook of Petroleum Product Analysis, 2nd ed. New Jersey: John Wiley & Sons, Inc.

Mendes, G., Aleme, H. G., & Barbeira, P. J. S. (2012). Determination of octane numbers in gasoline by distillation curves and partial least squares regression. Fuel, vol. 97, pp. 131–136.

Egraz, S., Kajo, B., Lézère, M., Javin, M., & Perez, E. (2002). Naphthalene. Lyon: International Agency for Research on Cancer.




DOI: http://dx.doi.org/10.36055/tjst.v17i2.11989

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.