Characteristics of aluminum-based composites reinforced of Al2O3/B4C by accumulative roll bonding (ARB)
Abstract
Metalworking technology is currently developing rapidly, especially the processing of metal composite materials. The metalworking process in which ultra-large plastic strains are introduced into the device to create ultra-fine grained metal is a new method for producing high-strength metals. This method is called accumulative roll bonding (ARB). The ideal operating temperature used in the ARB process is the use of dynamic recrystallization temperatures. Roll compression in ARB affects the microstructure and mechanical properties of the composite material, where rolling compression can produce the application of simple forces sequentially evenly on the compressed workpiece. With the addition of Al2O3 and B4C reinforcement in the ARB process, it is expected that the mechanical properties will increase significantly. Composite AA1070 or Al2O3 produces an average hardness: 43.36 BHN, using B4C reinforcement increased 53.50 BHN with AA17075 with Al2O3 reinforcement the hardness was 87.20, with B4C increased significantly by 105.2 BHN. This study compares Al2O3 and B4C as reinforcement on an application in metal matrix composites (MMC). Characteristics compared and comparison of types of AA1070 or AA7075 matrix in their suitability between the use of matrix and reinforcement processed by ARB.
Teknologi pengerjaan logam saat ini berkembang pesat, terutama pengolahan bahan-bahan komposit logam. Proses terjadi di mana strain plastik ultra-besar dimasukkan ke dalam perangkat untuk menciptakan logam yang berbutir ultra-halus merupakan metode terbaru untuk menghasilkan logam dengan kekuatan tinggi, metode ini dinamakan dengan accumulative roll bonding (ARB). Temperatur operasional yang ideal yang digunakan pada proses ARB adalah penggunaan temperatur dinamik rekristaslisasi, kompresi roll pada ARB memiliki efek pada struktur mikro dan sifat mekanik dari bahan komposit yang mana kompresi bergulir mampu menghasilkan penerapan gaya-gaya sederhana secara berurutan secara merata pada benda kerja yang mengalami kompresi. Penambahan penguat Al2O3 dan B4C pada proses ARB, terjadi peningkatan secara signifikan. Komposit AA1070/Al2O3 menghasilkan kekerasan rata-rata 43.36 BHN, menggunakan penguat B4C meningkat 53.50 BHN dengan AA7075 berpenguat Al2O3 kekerasan sebesar 87.20, dengan B4C meningkat signifikan sebesar 105.2 BHN. Penelitian ini membandingkan penggunaan Al2O3 dan B4C sebagai penguat dalam penerapanya sebagai penguat dalam kompoisit bermatrik logam. Karakteristik dibandingkan serta pembanding jenis matriks AA1070/AA7075 dalam kesesuaiannya antara penggunaan matriks terhadap penguat yang diproses oleh ARB.
Keywords
Full Text:
PDFReferences
Pramono, A., Zulfia, A., Rosidin, S., Pakhrurrozi, F., & Aqib, A. A. (2020). Simulasi efek penambahan pressing komposit berbasis aluminium hasil proses accumulative roll bonding (ARB) dengan metode elemen hingga. Journal Rotasi, vol. 20, no. 1, pp. 62–72.
Pramono, A., Kollo, L., Kallip, K., & Veinthal, R. (2015). Microstructure of AA7075 based composite by accumulative roll bonding process. Advanced Materials Research, vol. 1123, pp. 114-118.
Pramono, A., Alhamidi. A. A., & Nurfadila. R. (2018). Pengaruh parameter terkontrol pada proses accumulative roll bonding (ARB) terhadap sifat mekanik dan mikrostruktur aluminium seri 6 (AA6061). Flywheels: Jurnal Teknik Mesin, vol. 4, no. 2, pp. 68-73.
Argentero, S. (2012). Accumulative roll bonding technology of aluminum alloys. Proceedings of Strategic Management Factors of MNC’s Subsidiaries–Comparative Analysis of Metal Manufacturing and Other Industries in the Czech Republic, pp. 1-6.
Amirkhanlou, S., Ketabchi, M., Parvin, N., Khorsand, S., & Bahrami, R. (2013). Accumulative press bonding; a novel manufacturing process of nanostructured metal matrix composites. Materials and Design, vol. 52, pp. 367–374.
Azushima, A., Kopp, R., Korhonen, A., Yang, D. Y., Micari, F., Lahoti, G. D., Groche, P., Yanagimoto, J., Tsuji, N., Rosochowski, A., & Yanagida., A. (2008). Severe plastic deformation (SPD) processes for metals. CIRP Annals - Manufacturing Technology, vol. 57, pp. 716–735.
Pramono, A., Kollo, L., & Veinthal, R. (2016). Hot and cold regions during accumulative roll bonding of Al/Al2O3. Proceedings of the Estonian Academy of Sciences, Estonian Academy of Sciences, vol. 65, no. 2, pp. 132–137.
Pramono, A., Kollo, L., & Veinthal, R. (2015). Aluminum based composite by novel process: repetitive press roll bonding (RPRB), Procedia Chemistry, 16, 473-479.
Pramono, A., Milandia, A., Nugraha, K., & Fawaid, M. (2017). Aluminum alloys by ECAP consolidation for industrial application. Vanos Journal of Mechanical Engineering Education, vol. 2, no. 2, pp. 117-126.
Pramono, A. (2017). Teknologi terbaru severe plastic defoemation untuk aplikasi perangkat kemiliteran. Jurnal Defendonesia, vol. 3, no. 1, pp. 10-18.
Saito, Y., Utsunomiya, H., Tsuji, N., & Sakai, T. (1999). Novel ultra-high straining process for bulk material development of the accumulative roll bonding (ARB) process. Acta Mater, vol. 47, pp. 579–583.
Pramono, A., Dhoska, K., Alhamidi. A. A., & Milandia, A. (2019). Investigation of mechanical properties on composite materials by several of severe plastic deformation (SPD) methods. IOP Conf. Series: Materials Science and Engineering, vol. 673, no. 012120, pp. 1-7.
Pramono, A., Jamil, A. M., & Milandia, A. (2018). Aluminum based composites by severe plastic deformation process as new methods of manufacturing technology. MATEC Web of Conferences, vol. 218, no. 04011, pp. 1-9.
Pramono A. Kollo L. Kallip K. Veinthal R. & Gomon JK. (2014). Heat treatment of ultrafine grained high-strength aluminum alloy. Key-Engineering Materials, vol. 604, pp. 273-276.
Tabor, D. (1951). The hardness and strength of metals. Journal of Institute Metallurgy, vol. 79, pp. 1–18.
Alizadeh, M., Paydar M. H., & Sharifian J. F. (2013). Structural evaluation and mechanical properties of nanostructured Al/B4C composite fabricated by ARB process. Composites, Part B, pp. 339-343.
Kozumia, Y., Ueyama, M., Tsuji, N., Minamino, Y., & Ota, K. (2003). High damping capacity of ultrafine grained aluminum produced by accumulative roll bonding (ARB). Journal of Alloys and Compounds, vol. 355, no. 1, pp. 47-51.
Fritsch, M., Scholze, M. F. X., & Wagner. (2012). Cryogenic forming of AA7075 by equal- channel angular pressing. Material Wissen Schaftund Werkstofftechnik (Materials Science and Engineering Technology), vol. 43, no. 7, pp. 561–566.
Cepeda, C. M., Jiménez, J. M. Infanta, G., Ruano, O. A., & Carreno, F. (2011). High strain rate superplasticity at intermediate temperatures of the Al 7075 alloy severely processed by equal channel angular pressing. Journal of Alloys and Compounds, vol. 509, pp. 9589– 9597.
Kollo, L., Kallip, K., Gomon, J. K., & Kommel, L. (2012). Hot consolidation of aluminium and aluminium nano-mmc powders by equal channel angular pressing. MEDŽIAGOTYRA, Mater. Sci., vol. 18, pp. 234 – 237.
Cepeda, C. M., Jiménez, J. M., Infanta, G., Rauch, E. F., Blandin, J. J., Ruano, O. A., & Carreno, F. (2012). Influence of processing severity during equal-channel angular pressing on the microstructure of an Al- Zn-Mg-Cu Alloy. Metallurgical and Materials Transaction A, vol. 43A, pp. 4224–4236.
IsadareI, A. D., Aremo, B., Adeoye, M. O., Olawale, O. J., & Shittu, M. D. (2012) Effect of heat treatment on some mechanical properties of 7075 aluminium alloy. Mat. Res., vol. 16, no. 1, pp. 1439–1516.
DOI: http://dx.doi.org/10.36055/tjst.v17i2.12156
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Teknika: Jurnal Sains dan Teknologi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.