Tolerance assay of Pb resistant bacteria isolated from water of Ciujung River
Abstract
Bacteria are one group of some agents that are commonly used in biosorption. The Pb tolerance bacteria has been proved in many types of research. In the previous study, some bacteria were isolated from the Ciujung river, Serang, Banten water. This research studied the Pb maximum tolerance of those bacteria using the minimum inhibitory concentration (MIC) method. The isolates we assess in this research are IA4, IA21, and IA23 isolate. The bacteria inoculated on a nutrient agar (NA) plate medium that includes the various concentration of lead. The growth of bacteria is observed up to the minimum concentration of lead which bacteria cannot survive. The Pb maximum tolerance of IA4, IA21, and IA23 isolate is 30 ppm.
Bakteri adalah agen biologi yang sudah terbukti kemampuannya menyerap timbal (Pb) dalam proses biosorpsi. Pada penelitian sebelumnya sudah dilakukan isolasi beberapa bakteri yang mempunyai daya tahan terhadap Pb dari air sungai Ciujung. Pada penelitian ini, dilakukan pengujian kemampuan toleransi maksimum dari isolat-isolat bakteri tersebut terhadap logam timbal. Isolat-isolat bakteri yang diuji adalah isolat IA4, isolat IA21, dan isolat IA23. Pengujian kemampuan toleransi maksium dilakukan dengan metoda Minimum Inhibitory Concentration (MIC) dimana setiap isolat ditumbuhkan pada media yang mengandung variasi konsentrasi logam timbal. Pertumbuhan setiap isolat dipantau sampai pada konsentrasi timbal yang paling minimum dimana isolat-isolat tersebut tidak mampu lagi tumbuh pada konsentrasi tersebut. Kemampuan maksimum toleransi logam timbal untuk isolat IA4, IA21, dan IA23 yaitu 30 ppm.
Keywords
Full Text:
PDFReferences
D. H. Nies, “Microbial heavy-metal resistance,” Appl. Microbiol. Biotechnol., vol. 51, no. 6, pp. 730–750, 1999, doi: 10.1007/s002530051457.
H. Ali, E. Khan, and I. Ilahi, “Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation,” J. Chem., vol. 2019, pp. 1–14, 2019, doi: 10.1155/2019/6730305.
A. B. Yilmaz, M. K. Sangün, D. Yaǧlioǧlu, and C. Turan, “Metals (major, essential to non-essential) composition of the different tissues of three demersal fish species from İskenderun Bay, Turkey,” Food Chem., vol. 123, no. 2, pp. 410–415, 2010, doi: 10.1016/j.foodchem.2010.04.057.
B. Y. M. Bueno, M. L. Torem, F. Molina, and L. M. S. de Mesquita, “Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: Equilibrium and kinetic studies,” Miner. Eng., vol. 21, no. 1, pp. 65–75, 2008, doi: 10.1016/j.mineng.2007.08.013.
L. Check and A. Marteel-Parrish, “The fate and behavior of persistent, bioaccumulative, and toxic (PBT) chemicals: Examining lead (Pb) as a PBT metal,” Rev. Environ. Health, vol. 28, no. 2–3, pp. 85–96, 2013, doi: 10.1515/reveh-2013-0005.
G. Lockitch, “Perspectives on lead toxicity,” Clin. Biochem., vol. 26, no. 5, pp. 371–381, 1993, doi: 10.1016/0009-9120(93)90113-K.
A. L. Wani, A. Ara, and J. A. Usmani, “Lead toxicity: A review,” Interdiscip. Toxicol., vol. 8, no. 2, pp. 55–64, 2015, doi: 10.1515/intox-2015-0009.
S. Shamim, “Biosorption of Heavy Metals,” in Biosorption, J. Derco, Ed. Slovakia: IntechOpen, 2018.
E. Ratnawati, R. Ermawati, and S. Naimah, “Teknologi Biosorpsi oleh Mikroorganisme, Solusi Alternatif untuk Mengurangi Pencemaran Logam Berat,” J. Kim. dan Kemasan, vol. 32, no. 1, p. 34, 2010, doi: 10.24817/jkk.v32i1.2739.
S. M. T. Arashiro, “Lead absorption mechanisms in bacteria as strategies for lead bioremediation,” Appl. Microbiol. Biotechnol., vol. 102, no. 13, pp. 5437–5444, 2018.
M. J. Rani, B. Hemambika, J. Hemapriya, and V. R. Kannan, “Comparative assessment of heavy metal removal by immobilized and dead bacterial cells : A biosorption approach,” vol. 4, no. 2, pp. 77–83, 2010.
H. Hussein, S. F. Ibrahim, K. Kandeel, and H. Moawad, “Biosorption of heavy metals from waste water using Pseudomonas sp.,” Electron. J. Biotechnol., vol. 7, no. 1, pp. 45–53, 2004, doi: 10.2225/vol7-issue1-fulltext-2.
L. Babák, P. Šupinová, M. Zichová, R. Burdychová, and E. Vítová, “Biosorption of Cu, Zn and Pb by thermophilic bacteria - Effect of biomass concentration on biosorption capacity,” Acta Univ. Agric. Silvic. Mendelianae Brun., vol. 60, no. 5, pp. 9–18, 2012, doi: 10.11118/actaun201260050009.
D. P. Samarth, C. J. Chandekar, and R. Kaustubh, “Biosorption of Heavy Metals from Aqueous Solution using Bacillus Licheniformis Introduction :,” vol. 10, no. 2, pp. 12–19, 2012.
J. S. Brooke, “Stenotrophomonas maltophilia: An emerging global opportunistic pathogen,” Clin. Microbiol. Rev., vol. 25, no. 1, pp. 2–41, 2012, doi: 10.1128/CMR.00019-11.
F. Ikhsan, H. Herayati, S. Abdullah, and Y. Rukmayadi, “Eksplorasi bakteri penyerap logam Pb dari air Sungai Ciujung,” Tek. J. Sains dan Teknol., vol. 16, no. 2, p. 261, 2020, doi: 10.36055/tjst.v16i2.9338.
M. Li, C. Zhang, G. Chen, L. Nahar, S. D. Sarker, and M. Guo, “Headspace gas chromatographic method for antimicrobial screening: Minimum inhibitory concentration determination,” J. Pharm. Biomed. Anal., vol. 181, p. 113122, 2020, doi: 10.1016/j.jpba.2020.113122.
C. D. Miranda, R. Rojas, S. Contreras-Lynch, and A. Vega, “Evaluation of the correlation between minimum inhibitory concentrations (MIC) and disk diffusion data of Flavobacterium psychrophilum isolated from outbreaks occurred in Chilean salmonid farms,” Aquaculture, vol. 530, no. August 2020, p. 735811, 2021, doi: 10.1016/j.aquaculture.2020.735811.
L. Shao, C. You, J. Cao, Y. Jiang, Y. Liu, and Q. Liu, “High treatment failure rate is better explained by resistance gene detection than by minimum inhibitory concentration in patients with urogenital Chlamydia trachomatis infection,” Int. J. Infect. Dis., vol. 96, pp. 121–127, 2020, doi: 10.1016/j.ijid.2020.03.015.
T. Tyner and J. Francis, “Control, Standard, and Stock Solutions,” ACS Reag. Chem., 2017, doi: 10.1021/acsreagents.3002.
L. W. Marzan, M. Hossain, S. A. Mina, Y. Akter, and A. M. M. A. Chowdhury, “Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint,” Egypt. J. Aquat. Res., vol. 43, no. 1, pp. 65–74, 2017, doi: 10.1016/j.ejar.2016.11.002.
S. Opinion, “Draft Scientific Opinion on Acrylamide in Food,” Efsa, vol. 13, no. 6, pp. 1–10, 2010, doi: 10.2903/j.efsa.20YY.NNNN.Available.
U. Utami, L. Harianie, N. R. Dunyana, and Romaidi, “Lead-resistant bacteria isolated from oil wastewater sample for bioremediation of lead,” Water Sci. Technol., vol. 81, no. 10, pp. 2244–2249, 2020, doi: 10.2166/wst.2020.281.
K. Kurnia, N. H. Sadi, and S. Jumianto, “Isolation and Characterization of Pb Resistant Bacteria from Cilalay Lake, Indonesia,” Aceh Int. J. Sci. Technol., vol. 4, no. 3, pp. 83–87, 2015, doi: 10.13170/aijst.4.3.3016.
S. B. Choi and Y. S. Yun, “Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process,” Biotechnol. Lett., vol. 26, no. 4, pp. 331–336, 2004, doi: 10.1023/B:BILE.0000015453.20708.fc.
S. T. Akar, A. Gorgulu, B. Anilan, Z. Kaynak, and T. Akar, “Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 126–133, 2009, doi: 10.1016/j.jhazmat.2008.09.089.
G. Uslu and M. Tanyol, “Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature,” J. Hazard. Mater., vol. 135, no. 1–3, pp. 87–93, 2006, doi: 10.1016/j.jhazmat.2005.11.029.
H. Fatemi, B. Esmaiel Pour, and M. Rizwan, “Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress,” Environ. Pollut., vol. 266, p. 114982, 2020, doi: 10.1016/j.envpol.2020.114982.
S. H. Jebara, S. Abdelkerim, I. C. Fatnassi, M. Chiboub, O. Saadani, and M. Jebara, “Identification of effective Pb resistant bacteria isolated from Lens culinaris growing in lead contaminated soils,” J. Basic Microbiol., vol. 55, no. 3, pp. 346–353, 2015, doi: 10.1002/jobm.201300874.
J. Yongpisanphop, S. Babel, F. Kurisu, M. Kruatrachue, and P. Pokethitiyook, “Isolation and characterization of Pb-resistant plant growth promoting endophytic bacteria and their role in Pb accumulation by fast-growing trees,” Environ. Technol. (United Kingdom), vol. 41, no. 27, pp. 3598–3606, 2020, doi: 10.1080/09593330.2019.1615993.
D. H. Nies and S. Silver, “Ion efflux systems involved in bacterial metal resistances,” J. Ind. Microbiol., vol. 14, no. 2, pp. 186–199, 1995, doi: 10.1007/BF01569902.
C. Rensing, M. Ghosh, and B. P. Rosen, “Families of soft-metal-ion-transporting ATPases,” J. Bacteriol., vol. 181, no. 19, pp. 5891–5897, 1999, doi: 10.1128/jb.181.19.5891-5897.1999.
G. M. Gadd, “Heavy metal accumulation by bacteria and other microorganisms,” Experientia, vol. 46, no. 8, pp. 834–840, 1990, doi: 10.1007/BF01935534.
P. V. Bhaskar and N. B. Bhosle, “Bacterial extracellular polymeric substance (EPS): A carrier of heavy metals in the marine food-chain,” Environ. Int., vol. 32, no. 2, pp. 191–198, 2006, doi: 10.1016/j.envint.2005.08.010.
P. V. Bramhachari, P. B. Kavi Kishor, R. Ramadevi, R. Kumar, B. Rama Rao, and S. K. Dubey, “Isolation and characterization of mocous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3,” J. Microbiol. Biotechnol., vol. 17, no. 1, pp. 44–51, 2007.
M. M. Naik and S. K. Dubey, “Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA,” Curr. Microbiol., vol. 62, no. 2, pp. 409–414, 2011, doi: 10.1007/s00284-010-9722-2.
H. S. Levinson, I. Mahler, P. Blackwelder, and T. Hood, “Lead resistance and sensitivity in Staphylococcus aureus,” FEMS Microbiol. Lett., vol. 145, no. 3, pp. 421–425, 1996, doi: 10.1016/S0378-1097(96)00443-0.
C. E. Mire, J. A. Tourjee, W. F. O’Brien, K. V. Ramanujachary, and G. B. Hecht, “Lead Precipitation by Vibrio harveyi: Evidence for Novel Quorum-Sensing Interactions,” Appl. Environ. Microbiol., vol. 70, no. 2, pp. 855–864, 2004, doi: 10.1128/AEM.70.2.855-864.2004.
R. Chakravarty and P. C. Banerjee, “Morphological changes in an acidophilic bacterium induced by heavy metals,” Extremophiles, vol. 12, no. 2, pp. 279–284, 2008, doi: 10.1007/s00792-007-0128-4.
A. Gilis, P. Corbisier, W. Baeyens, S. Taghavi, M. Mergeay, and D. Van Der Lelie, “Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34,” J. Ind. Microbiol. Biotechnol., vol. 20, no. 1, pp. 61–68, 1998, doi: 10.1038/sj.jim.2900478.
E. Zanardini et al., “Lead-resistant microorganisms from red stains of marble of the Certosa of Pavia, Italy and use of nucleic acid-based techniques for their detection,” Int. Biodeterior. Biodegrad., vol. 40, no. 2–4, pp. 171–182, 1997, doi: 10.1016/S0964-8305(97)00057-7.
H. Teeling and H. Cypionka, “Microbial degradation of tetraethyl lead in soil monitored by microcalorimetry,” Appl. Microbiol. Biotechnol., vol. 48, no. 2, pp. 275–279, 1997, doi: 10.1007/s002530051050.
DOI: http://dx.doi.org/10.36055/tjst.v17i2.13053
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Teknika: Jurnal Sains dan Teknologi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.