Analysis of the relationship between land use change and potential inundation rob in The Cipunagara River Basin using machine learning algorithms on google earth engine

Gurusu Gurusu, Hendra Achiari

Abstract


Changes in land use in watersheds play a major role in the study of changes in tidal inundation. Land use is a form of human effort to change the environment into a stable environment such as agricultural land, roads, plantations, and settlements. The purpose of this study is the slope of the catchment area, changes in land use in 1996-2020, and the potential for tidal flooding due to changes in land use in the Cipunagara watershed. The method used is the analysis of satellite images available on the Google Earth Engine platform data cloud using machine learning algorithms. The results of the slope analysis in the Cipunagara watershed are divided into five classes, namely the flat category with an area of 52.67 km2, the sloping category covering an area of 823.98 km2, slightly steep covering an area of 226.79 km2, steep covering an area of 126.02 km2, and very steep covering an area of 74.96 km2. Spatial changes in land use from 1996 to 2020, namely for open land/settlements decreased by -15% (-196.92 km2), forest vegetation increased by +11% (+145.78 km2), waters/water decreased by -13% (-164.96 km2), and paddy fields/ponds increased by +17% (+216.11 km2). Analysis of the potential for tidal inundation (river runoff) downstream of the Cipunagara watershed correlates with changes in the use of open land, forest vegetation, and rice fields with an area of 1,982 ha (47%). Meanwhile, the potential for tidal inundation (tidal events) is correlated with changes in the use of paddy fields and waters/water with an area of 2,213.93 ha (53%). The results of the research can be utilized in the management of flood risk in the downstream area of the watershed.

 

Perubahan penggunaan lahan pada daerah aliran sungai memainkan peran utama dalam studi perubahan luasan genangan banjir rob. Tata guna lahan merupakan bentuk usaha manusia mengubah lingkungan menjadi lingkungan yang mapan seperti lahan pertanian, jalan, perkebunan dan pemukiman. Tujuan dari penelitian ini adalah identifikasi kelerengan catchment area, identifikasi perubahan spasial tataguna lahan tahun 1996-2020 dan memetakan potensi banjir rob akibat perubahan tataguna lahan di DAS Cipunagara. Metode yang digunakan adalah analisis citra satelit yang tersedia di cloud data platform Google Earth Engine dengan menggunakan algoritma machine learning. Hasil analisis kemiringan lereng pada DAS Cipunagara terbagi atas lima kelas yaitu kategori datar dengan luas 52.67 km2, kategori landai seluas 823.98 km2, agak curam seluas 226.79 km2, curam seluas 126.02 km2, dan sangat curam seluas 74.96 km2. Perubahan spasial tataguna lahan tahun 1996 sampai dengan 2020 yaitu untuk lahan terbuka/pemukiman mengalami pengurangan sebesar -15% (-196.92 km2), vegetasi hutan mengalami penambahan sebesar +11% (+145.78 km2), perairan/air terjadi pengurangan sebesar -13% (-164.96 km2), dan lahan sawah/tambak terjadi penambahan sebesar +17% (+216.11 km2). Analisis potensi genangan rob (kejadian limpasan sungai) di hilir DAS Cipunagara berkorelasi dengan perubahan tataguna lahan terbuka, vegetasi hutan, dan sawah dengan luas 1,982 ha (47%). Sementara potensi genangan rob (kejadian pasang surut) berkorelasi dengan perubahan tataguna lahan sawah dan perairan/air dengan luas 2,213.93 ha (53%). Hasil riset dapat dimanfaatkan dalam manajemen risiko banjir rob pada area hilir daerah aliran sungai.


Keywords


Land use, machine learning, rob flood.

Full Text:

PDF

References


FAO. (1997). State of the World’s Forests. Rome. Italy.

FAO, UNEP. (1999). Terminology for Integrated Resources Planning and Management. Italy.

Fan, F., Weng, Q., & Wang, Y. (2007). Land use and land cover change in Guangzhou, China, from 1998 to 2003, based on landsat TM /ETM+ Imagery. Sensors, 7, 1323–1342.

Prenzel B. (2004). Remote sensing-based quantification of land-cover and land-use change for planning. Prog Plann, 61, 281–299.

Farda, N.M. (2017). Multi-temporal land use mapping of coastal wetlands area using machine learning in google earth engine. Earth and Environmental Science, 98, 012042.

Alpaydin, E. (2010). Introduction to machine learning. MIT Press.

Kotsiantis S.B. (2007). Supervised machine learning: A review of classification techniques. Appl Comput Eng Real Word, 31, 249–268.

Farda, N. M. (2020). Image classification–Machine learning. Diakses pada tahun 2021, dari code.earthengine.google.com/?accept_repo=users/farda/EE03.

Fitriyanto, B. R. (2018). Pengaruh Dinamika Lahan Urban Terhadap Sebaran Kekritian Daerah Resapan Pada Daerah Aliran Sungai Yang Bermuara Di Teluk Jakarta. Universitas Diponegoro.

Fariz, T. R., & Nurhidayati, E. (2020). Mapping land coverage in the Kapuas Watershed using machine learning in google earth engine. Journal of Applied Geospatial Information, 4, 390-395.

Li, Y., Gong, X., Guo, Z., Xu, K., Hu, D., & Zhou, H. (2016). An index and approach for water extraction Using LANDSAT–OLI DATA. International Journal of Remote Sensing, 37, 3611 –3635.

Pekel, J. F., Cottam, A., Gorelick, N., & Belward. A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540. 418-422, DOI: 10.1038/nature20584.

Fariz, T. R., Daeni, F., & Sultan, H. (2021). Mapping land cover changes in Kreo Sub-Watershed using machine learning in google earth engine. Jurnal Sumberdaya Alam dan Lingkungan, 8, 85-92.




DOI: http://dx.doi.org/10.36055/tjst.v18i1.14708

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.