Degradation of methyl ester sulfonate using TiO2 photocatalyst

Muhammad Triyogo Adiwibowo, Ahmad Sukarya, Fauzi Ramdani Aryanto Putra, Marta Pramudita, Rudi Hartono, Alia Badra Pitaloka

Abstract


One common domestic waste in the waters is detergent residue due to the daily habit of washing clothes. Thus, wastewater treatment is needed to purify the water. One of the methods is photocatalytic degradation. In this study, TiO2 nanoparticles were used to degrade methyl ester sulfonate (MES), one of the raw materials for making detergents. This study aims to investigate the effect of TiO2 concentration, reaction time, and light source on the MES degradation. The variations of the degradation tests included photocatalyst concentrations of 0.5, 1, and 1.5 mg/L, irradiation times of 1, 2, and 3 hours, and UV lamps and sunlight. The residual surfactant in water was analyzed using the Methylene Blue Active Surface (MBAS) method. The principle of this method is that MES will bind to methylene blue to form a complex blue compound so that its concentration can be quantified using a UV-Vis spectrophotometer. This study showed that the higher photocatalyst concentration increased the surfactant degradation from 11.97% to 33.91%, and the longer the degradation time, the more surfactant was degraded up to 41.56% after 3 hours. The sunlight source produces 55.72% degradation, more than a 10-watt UV lamp. The MES degradation follows the second-order reaction equation with a rate constant of 0.0963 L/mg.hour.


Keywords


Methyl ester sulfonate, photodegradation, photocatalyst, TiO2

Full Text:

PDF

References


Central Bureau of Statistics. (2019). Surfactant Import Data.

Ghazali, R. & Ahmad, S. (2004). Biodegradability and ecotoxicity of palm stearin-based methyl ester sulphonates. J. Oil Palm Res., vol. 16, no. 1, pp. 39–44.

Ishak, S. A., Ghazali, R., Abd Maurad, Z., & Zolkarnain, N. (2017). Ecotoxicology study of various homologues of methyl ester sulfonates (MES) derived from palm oil. J. Surfactants Deterg., vol. 20, no. 6, pp. 1467–1473.

Merrettig-Bruns, U., & Jelen, E. (2009). Anaerobic biodegradation of detergent surfactants. Materials (Basel)., vol. 2, no. 1, pp. 181–206.

Fedeila, M., Hachaïchi-Sadouk, Z., Bautista, L. F., Simarro, R., & Nateche, F. (2018). Biodegradation of anionic surfactants by Alcaligenes faecalis, Enterobacter cloacae and Serratia marcescens strains isolated from industrial wastewater. Ecotoxicol. Environ. Saf., vol. 163, pp. 629–635.

Asok, A. K., & Jisha, M. S. (2012). Biodegradation of the anionic surfactant linear alkylbenzene sulfonate (LAS) by autochthonous Pseudomonas sp. Water, Air, Soil Pollut., vol. 223, no. 8, pp. 5039–5048.

Ashfaq, M. Y., & Qiblawey, H. (2018). Laundry wastewater treatment using ultrafiltration under different operating conditions. in AIP Conference Proceedings, 2018, vol. 2022, no. 1, p. 20002.

Yaseen, Z. M. et al. (2019). Laundry wastewater treatment using a combination of sand filter, bio-char and teff straw media. Sci. Rep., vol. 9, no. 1, pp. 1–11.

Wulandari, P. P., Adiwibowo, M. T., Redjeki, A. S., & Ibadurrohman, M. (2019). Synthesis of eco-friendly detergent based on crude palm oil and titania nanoparticles. Asian J. Chem., vol. 31, no. 10, pp. 2394–2396.

Adiwibowo, M. T., Ibadurrohman, M., & Slamet. (2019). Synthesis and performance test of nanofluidic detergents from palm oil-based primary alkyl sulfates surfactant and zinc oxide. in AIP Conference Proceedings, 2019, vol. 2085, no. 1, p. 20049.

Adiwibowo, M. T., Ibadurrohman, M., & Slamet, S. (2018). Stability and detergency of nanofluidic detergents containing palm oil-based primary alkyl sulfate surfactant and zinc oxide: Effect of carboxymethyl cellulose. in AIP Conference Proceedings, 2018, vol. 2024, no. 1, p. 20067.

Akbari, S., Moussavi, G., & Giannakis, S. (2021). Efficient photocatalytic degradation of ciprofloxacin under UVA-LED, using S, N-doped MgO nanoparticles: Synthesis, parametrization and mechanistic interpretation. J. Mol. Liq., vol. 324, p. 114831.

Prakash, K., Senthil Kumar, P., Pandiaraj, S., Saravanakumar, K., & Karuthapandian, S. (2016). Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. J. Exp. Nanosci., vol. 11, no. 14, pp. 1138–1155.

Basahel, S. N., Ali, T. T., Mokhtar, M., & Narasimharao, K. (2015). Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett., vol. 10, no. 1, pp. 1–13.

Nabi Zadeh, R., Mahvi, A. H., Ghanbariyan, M., Nasseri, S., & Naddafi, K. (2013). Photocatalytic degradation of alkyle benzene solfunate (LAS) from aqueous solution using TiO2 nanoparticles. J. Water Wastewater; Ab va Fazilab (in persian), vol. 24, no. 1, pp. 2–9.

Oyama, T., Aoshima, A., Horikoshi, S., Hidaka, H., Zhao, J., & Serpone, N. (2004). Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO2 dispersions under sunlight irradiation. Sol. Energy, vol. 77, no. 5, pp. 525–532.

Nam, W., Woo, K., & Han, G. (2009). Photooxidation of anionic surfactant (sodium lauryl sulfate) in a three-phase fluidized bed reactor using TiO2/SiO2 photocatalyst. J. Ind. Eng. Chem., vol. 15, no. 3, pp. 348–353.

Han, C., Li, Z., & Shen, J. (2009). Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2–Cu2O under visible irradiation. J. Hazard. Mater., vol. 168, no. 1, pp. 215–219.

Sanchez, M., Rivero, M. J., & Ortiz, I. (2011). Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis. Appl. Catal. B Environ., vol. 101, no. 3–4, pp. 515–521.

Wardhani, S., Bahari, A., & Khunur, M. M. (2017). Aktivitas fotokatalitik beads TiO2-N/Zeolit-Kitosan pada fotodegradasi metilen biru (kajian pengembanan, sumber sinar dan lama penyinaran). J. Environ. Eng. Sustain. Technol., vol. 3, no. 2, pp. 78–84.

El-Kemary, M., & El-Shamy, H. (2009). Fluorescence modulation and photodegradation characteristics of safranin O dye in the presence of ZnS nanoparticles. J. Photochem. Photobiol. A Chem., vol. 205, no. 2–3, pp. 151–155.




DOI: http://dx.doi.org/10.36055/tjst.v18i2.16940

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.